Motoaki Seki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1575325/publications.pdf

Version: 2024-02-01

1895 2203 46,791 303 99 208 citations h-index g-index papers 310 310 310 28843 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) Function as Transcriptional Activators in Abscisic Acid Signaling. Plant Cell, 2003, 15, 63-78.	3.1	1,905
2	Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant Journal, 2002, 31, 279-292.	2.8	1,697
3	Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology, 2003, 6, 410-417.	3.5	1,616
4	OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant Journal, 2003, 33, 751-763.	2.8	1,482
5	Isolation and Functional Analysis of Arabidopsis Stress-Inducible NAC Transcription Factors That Bind to a Drought-Responsive cis-Element in the early responsive to dehydration stress 1 Promoter[W]. Plant Cell, 2004, 16, 2481-2498.	3.1	1,329
6	Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant Journal, 2001, 27, 325-333.	2.8	1,138
7	Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant Journal, 2002, 29, 417-426.	2.8	1,002
8	Monitoring the Expression Pattern of 1300 Arabidopsis Genes under Drought and Cold Stresses by Using a Full-Length cDNA Microarray. Plant Cell, 2001, 13, 61-72.	3.1	986
9	Functional Analysis of an Arabidopsis Transcription Factor, DREB2A, Involved in Drought-Responsive Gene Expression. Plant Cell, 2006, 18, 1292-1309.	3.1	968
10	Monitoring Expression Profiles of Rice Genes under Cold, Drought, and High-Salinity Stresses and Abscisic Acid Application Using cDNA Microarray and RNA Gel-Blot Analyses Â. Plant Physiology, 2003, 133, 1755-1767.	2.3	906
11	A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant Journal, 2004, 39, 863-876.	2.8	877
12	Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature, 2001, 409, 1060-1063.	13.7	854
13	Empirical Analysis of Transcriptional Activity in the Arabidopsis Genome. Science, 2003, 302, 842-846.	6.0	853
14	Functional Analysis of Rice DREB1/CBF-type Transcription Factors Involved in Cold-responsive Gene Expression in Transgenic Rice. Plant and Cell Physiology, 2006, 47, 141-153.	1.5	853
15	AREB1 Is a Transcription Activator of Novel ABRE-Dependent ABA Signaling That Enhances Drought Stress Tolerance in Arabidopsis Â. Plant Cell, 2005, 17, 3470-3488.	3.1	826
16	Regulatory metabolic networks in drought stress responses. Current Opinion in Plant Biology, 2007, 10, 296-302.	3.5	761
17	NAC Transcription Factors, NST1 and NST3, Are Key Regulators of the Formation of Secondary Walls in Woody Tissues of Arabidopsis. Plant Cell, 2007, 19, 270-280.	3.1	739
18	The NAC Transcription Factors NST1 and NST2 of Arabidopsis Regulate Secondary Wall Thickenings and Are Required for Anther Dehiscence. Plant Cell, 2005, 17, 2993-3006.	3.1	632

#	Article	IF	Citations
19	Functional Annotation of a Full-Length Arabidopsis cDNA Collection. Science, 2002, 296, 141-145.	6.0	631
20	Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in <i>Arabidopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12539-12544.	3.3	622
21	In planta functions of the Arabidopsis cytokinin receptor family. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8821-8826.	3.3	610
22	Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 851-856.	3. 3	555
23	Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant Journal, 2004, 38, 982-993.	2.8	546
24	Comparative Genomics in Salt Tolerance between Arabidopsis and Arabidopsis-Related Halophyte Salt Cress Using Arabidopsis Microarray. Plant Physiology, 2004, 135, 1697-1709.	2.3	542
25	A Transmembrane Hybrid-Type Histidine Kinase in Arabidopsis Functions as an Osmosensor. Plant Cell, 1999, 11, 1743-1754.	3.1	501
26	â€~Omics' analyses of regulatory networks in plant abiotic stress responses. Current Opinion in Plant Biology, 2010, 13, 132-138.	3.5	477
27	Arabidopsis Transcriptome Analysis under Drought, Cold, High-Salinity and ABA Treatment Conditions using a Tiling Array. Plant and Cell Physiology, 2008, 49, 1135-1149.	1.5	475
28	Antagonistic Interaction between Systemic Acquired Resistance and the Abscisic Acid–Mediated Abiotic Stress Response in ⟨i⟩Arabidopsis⟨/i⟩ Å. Plant Cell, 2008, 20, 1678-1692.	3.1	465
29	Molecular responses to drought, salinity and frost: common and different paths for plant protection. Current Opinion in Biotechnology, 2003, 14, 194-199.	3.3	417
30	Two different novelcis-acting elements oferd1, aclpAhomologousArabidopsisgene function in induction by dehydration stress and dark-induced senescence. Plant Journal, 2003, 33, 259-270.	2.8	402
31	Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Functional and Integrative Genomics, 2002, 2, 282-291.	1.4	394
32	Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Molecular Genetics and Genomics, 2011, 286, 321-332.	1.0	377
33	The AP2/ERF Transcription Factor WIND1 Controls Cell Dedifferentiation in Arabidopsis. Current Biology, 2011, 21, 508-514.	1.8	369
34	Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Frontiers in Plant Science, 2015, 6, 114.	1.7	367
35	Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Molecular Biology, 2000, 42, 657-665.	2.0	341
36	Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: Implication for land plant evolution. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8007-8012.	3.3	341

#	Article	IF	Citations
37	TCP Transcription Factors Regulate the Activities of ASYMMETRIC LEAVES1 and miR164, as Well as the Auxin Response, during Differentiation of Leaves in <i>Arabidopsis</i> A. Plant Cell, 2010, 22, 3574-3588.	3.1	335
38	Epigenetic Memory for Stress Response and Adaptation in Plants. Plant and Cell Physiology, 2014, 55, 1859-1863.	1.5	321
39	Leucine-Rich Repeat Receptor-Like Kinase1 Is a Key Membrane-Bound Regulator of Abscisic Acid Early Signaling in Arabidopsis. Plant Cell, 2005, 17, 1105-1119.	3.1	313
40	AnArabidopsisGene Family Encoding DRE/CRT Binding Proteins Involved in Low-Temperature-Responsive Gene Expression. Biochemical and Biophysical Research Communications, 1998, 250, 161-170.	1.0	309
41	Alterations of Lysine Modifications on the Histone H3 N-Tail under Drought Stress Conditions in Arabidopsis thaliana. Plant and Cell Physiology, 2008, 49, 1580-1588.	1.5	308
42	CYP707A3, a major ABA 8′-hydroxylase involved in dehydration and rehydration response inArabidopsis thaliana. Plant Journal, 2006, 46, 171-182.	2.8	294
43	Transcriptional Regulation of ABI3- and ABA-responsive Genes Including RD29B and RD29A in Seeds, Germinating Embryos, and Seedlings of Arabidopsis. Plant Molecular Biology, 2006, 60, 51-68.	2.0	293
44	A Novel Zinc-binding Motif Revealed by Solution Structures of DNA-binding Domains of Arabidopsis SBP-family Transcription Factors. Journal of Molecular Biology, 2004, 337, 49-63.	2.0	267
45	Monitoring expression profiles of Arabidopsisgene expression during rehydration process after dehydration usingca. 7000 full-length cDNA microarray. Plant Journal, 2003, 34, 868-887.	2.8	263
46	Specific interactions between Dicer-like proteins and HYL1/DRB- family dsRNA-binding proteins in Arabidopsis thaliana. Plant Molecular Biology, 2005, 57, 173-188.	2.0	259
47	Plants Tolerant of High Boron Levels. Science, 2007, 318, 1417-1417.	6.0	256
48	Drought tolerance established by enhanced expression of the CC-NBS-LRRgene, ADR1, requires salicylic acid, EDS1 and ABI1. Plant Journal, 2004, 38, 810-822.	2.8	253
49	The FOX hunting system: an alternative gain-of-function gene hunting technique. Plant Journal, 2006, 48, 974-985.	2.8	244
50	Genome-wide analysis of alternative pre-mRNA splicing in Arabidopsis thaliana based on full-length cDNA sequences. Nucleic Acids Research, 2004, 32, 5096-5103.	6.5	235
51	Acetate-mediated novel survival strategy against drought in plants. Nature Plants, 2017, 3, 17097.	4.7	232
52	DNA-binding domains of plant-specific transcription factors: structure, function, and evolution. Trends in Plant Science, 2013, 18, 267-276.	4.3	229
53	Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: Analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Molecular Biology, 2004, 55, 327-342.	2.0	225
54	Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. Genome Research, 2007, 17, 175-183.	2.4	218

#	Article	IF	CITATIONS
55	High-efficiency cloning of Arabidopsis full-length cDNA by biotinylated CAP trapper. Plant Journal, 1998, 15, 707-720.	2.8	217
56	High Humidity Induces Abscisic Acid 8′-Hydroxylase in Stomata and Vasculature to Regulate Local and Systemic Abscisic Acid Responses in Arabidopsis. Plant Physiology, 2009, 149, 825-834.	2.3	216
57	Transition of Chromatin Status During the Process of Recovery from Drought Stress in Arabidopsis thaliana. Plant and Cell Physiology, 2012, 53, 847-856.	1.5	208
58	Chromatin regulation functions in plant abiotic stress responses. Plant, Cell and Environment, 2010, 33, 604-611.	2.8	194
59	Identification of Arabidopsis Genes Regulated by High Light–Stress Using cDNA Microarray¶. Photochemistry and Photobiology, 2003, 77, 226.	1.3	193
60	Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant, Cell and Environment, 2003, 26, 1917-1926.	2.8	191
61	<i>Arabidopsis</i> AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4840-4845.	3.3	191
62	Vacuolar Processing Enzymes Are Essential for Proper Processing of Seed Storage Proteins in Arabidopsis thaliana. Journal of Biological Chemistry, 2003, 278, 32292-32299.	1.6	189
63	The Effect of Overexpression of Two Brassica CBF/DREB1-like Transcription Factors on Photosynthetic Capacity and Freezing Tolerance in Brassica napus. Plant and Cell Physiology, 2005, 46, 1525-1539.	1.5	186
64	<i>Arabidopsis</i> type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3090-3095.	3.3	186
65	Solution Structure of an Arabidopsis WRKY DNA Binding Domain. Plant Cell, 2005, 17, 944-956.	3.1	185
66	Small open reading frames associated with morphogenesis are hidden in plant genomes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2395-2400.	3.3	178
67	Genome-wide suppression of aberrant mRNA-like noncoding RNAs by NMD in <i>Arabidopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2453-2458.	3.3	165
68	A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death. Plant Journal, 2005, 43, 873-888.	2.8	164
69	Differential Gene Expression in Soybean Leaf Tissues at Late Developmental Stages under Drought Stress Revealed by Genome-Wide Transcriptome Analysis. PLoS ONE, 2012, 7, e49522.	1.1	162
70	Toxicity of Free Proline Revealed in an Arabidopsis T-DNA-Tagged Mutant Deficient in Proline Dehydrogenase. Plant and Cell Physiology, 2003, 44, 541-548.	1.5	161
71	ACTCAT, a Novel cis-Acting Element for Proline- and Hypoosmolarity-Responsive Expression of the ProDH Gene Encoding Proline Dehydrogenase in Arabidopsis. Plant Physiology, 2002, 130, 709-719.	2.3	159
72	Classification and Expression Analysis of Arabidopsis F-Box-Containing Protein Genes. Plant and Cell Physiology, 2002, 43, 1073-1085.	1.5	158

#	Article	IF	Citations
73	DEAR1, a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis. Journal of Plant Research, 2009, 122, 633-643.	1.2	154
74	Arabidopsis HDA6 Regulates Locus-Directed Heterochromatin Silencing in Cooperation with MET1. PLoS Genetics, 2011, 7, e1002055.	1.5	148
75	Transcriptome Analyses of a Salt-Tolerant Cytokinin-Deficient Mutant Reveal Differential Regulation of Salt Stress Response by Cytokinin Deficiency. PLoS ONE, 2012, 7, e32124.	1.1	146
76	Identification of plant promoter constituents by analysis of local distribution of short sequences. BMC Genomics, 2007, 8, 67.	1.2	142
77	Group A PP2Cs evolved in land plants as key regulators of intrinsic desiccation tolerance. Nature Communications, 2013, 4, 2219.	5.8	142
78	The karrikin receptor KAI2 promotes drought resistance in Arabidopsis thaliana. PLoS Genetics, 2017, 13, e1007076.	1.5	140
79	Genome sequence and analysis of the Japanese morning glory Ipomoea nil. Nature Communications, 2016, 7, 13295.	5.8	138
80	Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays. Functional and Integrative Genomics, 2006, 6, 212-234.	1.4	137
81	CNI1/ATL31, a RINGâ€type ubiquitin ligase that functions in the carbon/nitrogen response for growth phase transition in Arabidopsis seedlings. Plant Journal, 2009, 60, 852-864.	2.8	135
82	Arabidopsis HDA6 is required for freezing tolerance. Biochemical and Biophysical Research Communications, 2011, 406, 414-419.	1.0	133
83	Histone Modifications Form Epigenetic Regulatory Networks to Regulate Abiotic Stress Response. Plant Physiology, 2020, 182, 15-26.	2.3	132
84	Identification and Expression Analysis of Cytokinin Metabolic Genes in Soybean under Normal and Drought Conditions in Relation to Cytokinin Levels. PLoS ONE, 2012, 7, e42411.	1.1	132
85	Analysis of ABA Hypersensitive Germination2 revealed the pivotal functions of PARN in stress response in Arabidopsis. Plant Journal, 2005, 44, 972-984.	2.8	131
86	Monitoring the expression profiles of genes induced by hyperosmotic, high salinity, and oxidative stress and abscisic acid treatment in Arabidopsis cell culture using a full-length cDNA microarray. Plant Molecular Biology, 2004, 56, 29-55.	2.0	130
87	RARTF: Database and Tools for Complete Sets of Arabidopsis Transcription Factors. DNA Research, 2005, 12, 247-256.	1.5	130
88	Identifying the target genes of <scp>SUPPRESSOR OF GAMMA RESPONSE</scp> 1, a master transcription factor controlling <scp>DNA</scp> damage response in <i>Arabidopsis</i> . Plant Journal, 2018, 94, 439-453.	2.8	127
89	A Plant Locus Essential for Phylloquinone (Vitamin K1) Biosynthesis Originated from a Fusion of Four Eubacterial Genes*. Journal of Biological Chemistry, 2006, 281, 17189-17196.	1.6	126
90	RCH1, a Locus in Arabidopsis That Confers Resistance to the Hemibiotrophic Fungal Pathogen Colletotrichum higginsianum. Molecular Plant-Microbe Interactions, 2004, 17, 749-762.	1.4	123

#	Article	IF	Citations
91	Systematic approaches to using the FOX hunting system to identify useful rice genes. Plant Journal, 2009, 57, 883-894.	2.8	121
92	Regulating Subcellular Metal Homeostasis: The Key to Crop Improvement. Frontiers in Plant Science, 2016, 7, 1192.	1.7	118
93	Identification of stress-tolerance-related transcription-factor genes via mini-scale Full-length cDNA Over-eXpressor (FOX) gene hunting system. Biochemical and Biophysical Research Communications, 2007, 364, 250-257.	1.0	112
94	Folate synthesis in plants: The p-aminobenzoate branch is initiated by a bifunctional PabA-PabB protein that is targeted to plastids. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1496-1501.	3.3	111
95	Identification of photorespiratory glutamate:glyoxylate aminotransferase (GGAT) gene in Arabidopsis. Plant Journal, 2003, 33, 975-987.	2.8	109
96	The Arabidopsis SDG4 contributes to the regulation of pollen tube growth by methylation of histone H3 lysines 4 and 36 in mature pollen. Developmental Biology, 2008, 315, 355-368.	0.9	109
97	Genome-wide analysis of endogenous abscisic acid-mediated transcription in dry and imbibed seeds of Arabidopsis using tiling arrays. Plant Journal, 2010, 62, 39-51.	2.8	109
98	Solution Structure of the B3 DNA Binding Domain of the Arabidopsis Cold-Responsive Transcription Factor RAV1 [W]. Plant Cell, 2004, 16, 3448-3459.	3.1	107
99	The Cold Signaling Attenuator HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 Activates <i>FLOWERING LOCUS C</i> Transcription via Chromatin Remodeling under Short-Term Cold Stress in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 4378-4390.	3.1	106
100	A Stress-Activated Transposon in Arabidopsis Induces Transgenerational Abscisic Acid Insensitivity. Scientific Reports, 2016, 6, 23181.	1.6	106
101	A New Resource of Locally Transposed DissociationElements for Screening Gene-Knockout Lines in Silico on the Arabidopsis Genome. Plant Physiology, 2002, 129, 1695-1699.	2.3	103
102	A genome-wide gain-of-function analysis of rice genes using the FOX-hunting system. Plant Molecular Biology, 2007, 65, 357-371.	2.0	103
103	Transcriptome Analysis Using a High-Density Oligomicroarray under Drought Stress in Various Genotypes of Cassava: An Important Tropical Crop. DNA Research, 2012, 19, 335-345.	1.5	101
104	Armadillo repeatâ€containing kinesins and a NIMAâ€related kinase are required for epidermalâ€cell morphogenesis in Arabidopsis. Plant Journal, 2008, 53, 157-171.	2.8	100
105	Development of 5006 Full-Length CDNAs in Barley: A Tool for Accessing Cereal Genomics Resources. DNA Research, 2009, 16, 81-89.	1.5	99
106	Heterogeneity of Arabidopsis core promoters revealed by highâ€density TSS analysis. Plant Journal, 2009, 60, 350-362.	2.8	99
107	Sequencing and Analysis of Approximately 40 000 Soybean cDNA Clones from a Full-Length-Enriched cDNA Library. DNA Research, 2008, 15, 333-346.	1.5	98
108	Structural Basis for Sequence-specific DNA Recognition by an Arabidopsis WRKY Transcription Factor. Journal of Biological Chemistry, 2012, 287, 7683-7691.	1.6	95

#	Article	IF	CITATIONS
109	RIKEN Arabidopsis full-length (RAFL) cDNA and its applications for expression profiling under abiotic stress conditions. Journal of Experimental Botany, 2003, 55, 213-223.	2.4	94
110	Transcriptomic Analysis of Soil-Grown Arabidopsis thaliana Roots and Shoots in Response to a Drought Stress. Frontiers in Plant Science, 2016, 7, 180.	1.7	94
111	Geneâ€specific expression and calcium activation of Arabidopsis thaliana phospholipase C isoforms. New Phytologist, 2004, 162, 643-654.	3.5	92
112	Genes for the peptidoglycan synthesis pathway are essential for chloroplast division in moss. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6753-6758.	3.3	92
113	Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response. BMC Plant Biology, 2007, 7, 66.	1.6	91
114	AtPep3 is a hormone-like peptide that plays a role in the salinity stress tolerance of plants. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5810-5815.	3.3	89
115	Plastidic RNA polymerase factors in Arabidopsis. Plant and Cell Physiology, 1999, 40, 832-842.	1.5	87
116	Folate synthesis in plants: the last step of the p-aminobenzoate branch is catalyzed by a plastidial aminodeoxychorismate lyase. Plant Journal, 2004, 40, 453-461.	2.8	86
117	Ethanol Enhances High-Salinity Stress Tolerance by Detoxifying Reactive Oxygen Species in Arabidopsis thaliana and Rice. Frontiers in Plant Science, 2017, 8, 1001.	1.7	86
118	A regulatory module controlling stress-induced cell cycle arrest in Arabidopsis. ELife, 2019, 8, .	2.8	86
119	The cDNA Microarray Analysis Using an Arabidopsis pad3 Mutant Reveals the Expression Profiles and Classification of Genes Induced by Alternaria brassicicola Attack. Plant and Cell Physiology, 2003, 44, 377-387.	1.5	83
120	Identification of ASK and clock-associated proteins as molecular partners of LKP2 (LOV kelch protein) Tj ETQq0 C	OrgBT/O	verlock 10 Tf
121	Solution Structure of the Major DNA-binding Domain of Arabidopsis thaliana Ethylene-insensitive3-like3. Journal of Molecular Biology, 2005, 348, 253-264.	2.0	82
122	Overexpression of Arabidopsis response regulators, ARR4/ATRR1/IBC7 and ARR8/ATRR3, alters cytokinin responses differentially in the shoot and in callus formation. Biochemical and Biophysical Research Communications, 2002, 293, 806-815.	1.0	81
123	Overexpression of LSH1, a member of an uncharacterised gene family, causes enhanced light regulation of seedling development. Plant Journal, 2004, 37, 694-706.	2.8	80
124	AtXTH27 plays an essential role in cell wall modification during the development of tracheary elements. Plant Journal, 2005, 42, 525-534.	2.8	80
125	Structures and evolutionary origins of plant-specific transcription factor DNA-binding domains. Plant Physiology and Biochemistry, 2008, 46, 394-401.	2.8	80
126	Analysis of Differential Expression Patterns of mRNA and Protein During Cold-acclimation and De-acclimation in Arabidopsis. Molecular and Cellular Proteomics, 2014, 13, 3602-3611.	2.5	78

#	Article	IF	CITATIONS
127	A novelArabidopsisgeneTONSOKUis required for proper cell arrangement in root and shoot apical meristems. Plant Journal, 2004, 38, 673-684.	2.8	76
128	The Distinct Roles of Class I and II RPD3-Like Histone Deacetylases in Salinity Stress Response. Plant Physiology, 2017, 175, 1760-1773.	2.3	76
129	Gene delivery into cultured plant cells by DNA-coated gold particles accelerated by a pneumatic particle gun. Theoretical and Applied Genetics, 1990, 80, 813-816.	1.8	74
130	Transcriptomic analysis of rice in response to iron deficiency and excess. Rice, 2014, 7, 18.	1.7	74
131	Recent advances in the characterization of plant transcriptomes in response to drought, salinity, heat, and cold stress. F1000Research, 2019, 8, 658.	0.8	74
132	RARGE: a large-scale database of RIKEN Arabidopsis resources ranging from transcriptome to phenome. Nucleic Acids Research, 2004, 33, D647-D650.	6.5	73
133	An Epigenetic Integrator: New Insights into Genome Regulation, Environmental Stress Responses and Developmental Controls by HISTONE DEACETYLASE 6. Plant and Cell Physiology, 2012, 53, 794-800.	1.5	71
134	Characterization of expressed sequence tags from a full-length enriched cDNA library of Cryptomeria japonica male strobili. BMC Genomics, 2008, 9, 383.	1.2	70
135	Expression and Interaction Analysis of Arabidopsis Skp1-Related Genes. Plant and Cell Physiology, 2004, 45, 83-91.	1.5	67
136	Generation of chimeric repressors that confer salt tolerance in <i>Arabidopsis</i> and rice. Plant Biotechnology Journal, 2011, 9, 736-746.	4.1	67
137	Cassava breeding and agronomy in Asia: 50 years of history and future directions. Breeding Science, 2020, 70, 145-166.	0.9	67
138	Histone acetylation orchestrates wound-induced transcriptional activation and cellular reprogramming in Arabidopsis. Communications Biology, 2019, 2, 404.	2.0	65
139	Acetic Acid Treatment Enhances Drought Avoidance in Cassava (Manihot esculenta Crantz). Frontiers in Plant Science, 2019, 10, 521.	1.7	65
140	DNA Microarray Analysis of Plastid Gene Expression in anArabidopsisMutant Deficient in a Plastid Transcription Factor Sigma, SIG2. Bioscience, Biotechnology and Biochemistry, 2004, 68, 694-704.	0.6	64
141	Isolation and identification of ubiquitin-related proteins from Arabidopsis seedlings. Journal of Experimental Botany, 2009, 60, 3067-3073.	2.4	61
142	The modulation of acetic acid pathway genes in Arabidopsis improves survival under drought stress. Scientific Reports, 2018, 8, 7831.	1.6	59
143	A Resource of 5,814 Dissociation Transposon-tagged and Sequence-indexed Lines of Arabidopsis Transposed from Start Loci on Chromosome 5. Plant and Cell Physiology, 2005, 46, 1149-1153.	1.5	58
144	Tissue-Specific Transcriptome Analysis Reveals Cell Wall Metabolism, Flavonol Biosynthesis and Defense Responses are Activated in the Endosperm of Germinating Arabidopsis thaliana Seeds. Plant and Cell Physiology, 2012, 53, 16-27.	1.5	58

#	Article	IF	Citations
145	Ky-2, a Histone Deacetylase Inhibitor, Enhances High-Salinity Stress Tolerance in (i) Arabidopsis thaliana (i). Plant and Cell Physiology, 2016, 57, 776-783.	1.5	58
146	Comparative functional analyses of DWARF14 and KARRIKIN INSENSITIVEÂ2 in drought adaptation of <i>Arabidopsis thaliana </i> In the comparative functional analyses of DWARF14 and KARRIKIN INSENSITIVEÂ2 in drought adaptation of <i>Arabidopsis thaliana </i> In the comparative functional analyses of DWARF14 and KARRIKIN INSENSITIVEÂ2 in drought adaptation of <i>Arabidopsis thaliana </i> In the comparative functional analyses of DWARF14 and KARRIKIN INSENSITIVEÂ2 in drought adaptation of <i>Arabidopsis thaliana </i> In the comparative functional analyses of DWARF14 and KARRIKIN INSENSITIVEÂ2 in drought adaptation of <i>Arabidopsis thaliana </i> In the comparative functional analyses of DWARF14 and KARRIKIN INSENSITIVEÂ2 in drought adaptation of <i>Arabidopsis thaliana </i> In the comparative function of <i>Arabidopsis thaliana </i> In the	2.8	58
147	Large-scale collection and annotation of full-length enriched cDNAs from a model halophyte, Thellungiella halophila. BMC Plant Biology, 2008, 8, 115.	1.6	57
148	RNA regulation in plant abiotic stress responses. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 149-153.	0.9	57
149	Loss of Arabidopsis 5′–3′ Exoribonuclease AtXRN4 Function Enhances Heat Stress Tolerance of Plants Subjected to Severe Heat Stress. Plant and Cell Physiology, 2015, 56, 1762-1772.	1.5	57
150	Catalysis, Subcellular Localization, Expression and Evolution of the Targeting Peptides Degrading Protease, AtPreP2. Plant and Cell Physiology, 2005, 46, 985-996.	1.5	56
151	Identification of the candidate genes regulated by RNA-directed DNA methylation in Arabidopsis. Biochemical and Biophysical Research Communications, 2008, 376, 553-557.	1.0	54
152	ABA 9′-hydroxylation is catalyzed by CYP707A in Arabidopsis. Phytochemistry, 2011, 72, 717-722.	1.4	52
153	HsfA1d, a Protein Identified via FOX Hunting Using Thellungiella salsuginea cDNAs Improves Heat Tolerance by Regulating Heat-Stress-Responsive Gene Expression. Molecular Plant, 2013, 6, 411-422.	3.9	52
154	Primed histone demethylation regulates shoot regenerative competency. Nature Communications, 2019, 10, 1786.	5.8	52
155	Autophosphorylation profiling of Arabidopsis protein kinases using the cell-free system. Phytochemistry, 2011, 72, 1136-1144.	1.4	51
156	Expression Profiles of Arabidopsis Phospholipase A IIA Gene in Response to Biotic and Abiotic Stresses. Plant and Cell Physiology, 2003, 44, 1246-1252.	1.5	50
157	Arabidopsis Rad51B is important for double-strand DNA breaks repair in somatic cells. Plant Molecular Biology, 2005, 57, 819-833.	2.0	50
158	Transduction of RNA-directed DNA methylation signals to repressive histone marks in Arabidopsis thaliana. EMBO Journal, 2010, 29, 352-362.	3.5	49
159	A structure-based strategy for discovery of small ligands binding to functionally unknown proteins: Combination ofin silico screening and surface plasmon resonance measurements. Proteomics, 2005, 5, 1472-1480.	1.3	48
160	A simple and high-sensitivity method for analysis of ubiquitination and polyubiquitination based on wheat cell-free protein synthesis. BMC Plant Biology, 2009, 9, 39.	1.6	48
161	Genome-scale, biochemical annotation method based on the wheat germ cell-free protein synthesis system. Phytochemistry, 2004, 65, 1549-1555.	1.4	47
162	Construction of a full-length cDNA library from young spikelets of hexaploid wheat and its characterization by large-scale sequencing of expressed sequence tags. Genes and Genetic Systems, 2004, 79, 227-232.	0.2	47

#	Article	IF	CITATION
163	Surveillance of $3\hat{a}\in^2$ Noncoding Transcripts Requires FIERY1 and XRN3 in <i>Arabidopsis</i> , G3: Genes, Genomes, Genetics, 2012, 2, 487-498.	0.8	47
164	Arabidopsis Non-Coding RNA Regulation in Abiotic Stress Responses. International Journal of Molecular Sciences, 2013, 14, 22642-22654.	1.8	47
165	Paralogs and mutants show that one DMA synthase functions in iron homeostasis in rice. Journal of Experimental Botany, 2017, 68, 1785-1795.	2.4	47
166	The Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid Alleviates Salinity Stress in Cassava. Frontiers in Plant Science, 2016, 7, 2039.	1.7	47
167	A rationally designed JAZ subtype-selective agonist of jasmonate perception. Nature Communications, 2018, 9, 3654.	5.8	47
168	Mapping of 25 Drought-Inducible Genes, RD and ERD, in Arabidopsis thaliana. Plant and Cell Physiology, 1999, 40, 119-123.	1.5	46
169	Identification of Arabidopsis Genes Regulated by High Light-Stress Using cDNA Microarray¶. Photochemistry and Photobiology, 2003, 77, 226-233.	1.3	46
170	Members of the Plant CRK Superfamily Are Capable of Trans- and Autophosphorylation of Tyrosine Residues. Journal of Biological Chemistry, 2015, 290, 16665-16677.	1.6	46
171	Genome-wide analysis reveals phytohormone action during cassava storage root initiation. Plant Molecular Biology, 2015, 88, 531-543.	2.0	46
172	Advances in Chemical Priming to Enhance Abiotic Stress Tolerance in Plants. Plant and Cell Physiology, 2021, 61, 1995-2003.	1.5	46
173	Regional insertional mutagenesis of genes onArabidopsis thalianachromosome V using theAc/Dstransposon in combination with a cDNA scanning method. Plant Journal, 1999, 17, 433-444.	2.8	45
174	AnArabidopsisSBP-domain fragment with a disrupted C-terminal zinc-binding site retains its tertiary structure. FEBS Letters, 2006, 580, 2109-2116.	1.3	45
175	Control of root cap maturation and cell detachment by BEARSKIN transcription factors in <i>Arabidopsis</i> . Development (Cambridge), 2016, 143, 4063-4072.	1.2	45
176	Transient expression of ?-glucuronidase in Arabidopsis thaliana leaves and roots and Brassica napus stems using a pneumatic particle gun. Plant Molecular Biology, 1991, 17, 259-263.	2.0	44
177	Assessment of adaptive evolution between wheat and rice as deduced from full-length common wheat cDNA sequence data and expression patterns. BMC Genomics, 2009, 10, 271.	1.2	44
178	tasiRNA-ARF Pathway Moderates Floral Architecture in <i>Arabidopsis</i> Plants Subjected to Drought Stress. BioMed Research International, 2014, 2014, 1-10.	0.9	44
179	A poly(A)-specific ribonuclease directly regulates the poly(A) status of mitochondrial mRNA in Arabidopsis. Nature Communications, 2013, 4, 2247.	5.8	43
180	Oligouridylate Binding Protein 1b Plays an Integral Role in Plant Heat Stress Tolerance. Frontiers in Plant Science, 2016, 7, 853.	1.7	43

#	Article	IF	Citations
181	Arabidopsis molybdenum cofactor sulfurase ABA3 contributes to anthocyanin accumulation and oxidative stress tolerance in ABA-dependent and independent ways. Scientific Reports, 2018, 8, 16592.	1.6	43
182	Long noncoding RNAs in Brassica rapa L. following vernalization. Scientific Reports, 2019, 9, 9302.	1.6	42
183	Molecular responses to water stress inArabidopsis thaliana. Journal of Plant Research, 1998, 111, 345-351.	1.2	41
184	Analysis of gene expression profiles in Arabidopsis salt overly sensitive mutants sos2-1 and sos3 -1. Plant, Cell and Environment, 2005, 28, 1267-1275.	2.8	40
185	Wheat germ-based protein libraries for the functional characterisation of the Arabidopsis E2 ubiquitin conjugating enzymes and the RING-type E3 ubiquitin ligase enzymes. BMC Plant Biology, 2015, 15, 275.	1.6	40
186	Disposal of chloroplasts with abnormal function into the vacuole in Arabidopsis thaliana cotyledon cells. Protoplasma, 2004, 223, 229-32.	1.0	39
187	Comparative genomic analysis of 1047 completely sequenced cDNAs from an Arabidopsis-related model halophyte, Thellungiella halophila. BMC Plant Biology, 2010, 10, 261.	1.6	38
188	Comparative analysis of root transcriptomes from two contrasting drought-responsive Williams 82 and DT2008 soybean cultivars under normal and dehydration conditions. Frontiers in Plant Science, 2015, 6, 551.	1.7	37
189	Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants. Journal of Experimental Botany, 2016, 67, 1357-1368.	2.4	36
190	Arabidopsis encyclopedia using full-length cDNAs and its application. Plant Physiology and Biochemistry, 2001, 39, 211-220.	2.8	34
191	Cell-free synthesis of zinc-binding proteins. Journal of Structural and Functional Genomics, 2007, 7, 93-100.	1.2	34
192	Defective cytokinin signaling reprograms lipid and flavonoid gene-to-metabolite networks to mitigate high salinity in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	34
193	Comparison of Leaf Sheath Transcriptome Profiles with Physiological Traits of Bread Wheat Cultivars under Salinity Stress. PLoS ONE, 2015, 10, e0133322.	1.1	33
194	Functional annotation of 19,841 Populus nigra full-length enriched cDNA clones. BMC Genomics, 2007, 8, 448.	1.2	32
195	Characterization of Four Extensin Genes in Arabidopsis thaliana by Differential Gene Expression under Stress and Non-Stress Conditions. DNA Research, 2001, 8, 115-122.	1.5	28
196	Construction and EST sequencing of full-length, drought stress cDNA libraries for common beans (Phaseolus vulgaris L.). BMC Plant Biology, 2011, 11, 171.	1.6	28
197	Cassava (Manihot esculenta) transcriptome analysis in response to infection by the fungus Colletotrichum gloeosporioides using an oligonucleotide-DNA microarray. Journal of Plant Research, 2016, 129, 711-726.	1.2	28
198	Cytological and molecular analyses of non-host resistance of Arabidopsis thaliana to Alternaria alternata. Molecular Plant Pathology, 2005, 6, 615-627.	2.0	27

#	Article	IF	Citations
199	Arabidopsis Tiling Array Analysis to Identify the Stress-Responsive Genes. Methods in Molecular Biology, 2010, 639, 141-155.	0.4	27
200	Biological Function of Changes in RNA Metabolism in Plant Adaptation to Abiotic Stress. Plant and Cell Physiology, 2019, 60, 1897-1905.	1.5	27
201	Sm-Like Protein-Mediated RNA Metabolism Is Required for Heat Stress Tolerance in Arabidopsis. Frontiers in Plant Science, 2016, 7, 1079.	1.7	26
202	Integrative omics approaches revealed a crosstalk among phytohormones during tuberous root development in cassava. Plant Molecular Biology, 2022, 109, 249-269.	2.0	26
203	Proteomic Analysis of the 26S Proteasome Reveals Its Direct Interaction with Transit Peptides of Plastid Protein Precursors for Their Degradation. Journal of Proteome Research, 2014, 13, 3223-3230.	1.8	25
204	Genome-wide characterization of DNA methylation, small RNA expression, and histone H3 lysine nine di-methylation in <i>Brassica rapa</i> L DNA Research, 2018, 25, 511-520.	1.5	25
205	The histone modification H3 lysine 27 tri-methylation has conserved gene regulatory roles in the triplicated genome of Brassica rapa L DNA Research, 2019, 26, 433-443.	1.5	25
206	The transport of essential micronutrients in rice. Molecular Breeding, 2019, 39, 1.	1.0	25
207	Cytosolic GLUTAMINE SYNTHETASE1;1 Modulates Metabolism and Chloroplast Development in Roots. Plant Physiology, 2020, 182, 1894-1909.	2.3	25
208	Solution structure of the rhodanese homology domain At4g01050(175-295) from Arabidopsis thaliana. Protein Science, 2009, 14, 224-230.	3.1	24
209	Arabidopsis RPT2a Encoding the 26S Proteasome Subunit is Required for Various Aspects of Root Meristem Maintenance, and Regulates Gametogenesis Redundantly with its Homolog, RPT2b. Plant and Cell Physiology, 2011, 52, 1628-1640.	1.5	23
210	Acetic-acid-induced jasmonate signaling in root enhances drought avoidance in rice. Scientific Reports, 2021, 11, 6280.	1.6	23
211	Functional genomics using RIKEN Arabidopsis thaliana full-length cDNAs. Journal of Plant Research, 2009, 122, 355-366.	1.2	22
212	Transcriptome analysis of soybean (Glycine max) root genes differentially expressed in rhizobial, arbuscular mycorrhizal, and dual symbiosis. Journal of Plant Research, 2019, 132, 541-568.	1.2	22
213	PtWOX11 acts as master regulator conducting the expression of key transcription factors to induce de novo shoot organogenesis in poplar. Plant Molecular Biology, 2018, 98, 389-406.	2.0	21
214	Formation of friable embryogenic callus in cassava is enhanced under conditions of reduced nitrate, potassium and phosphate. PLoS ONE, 2017, 12, e0180736.	1.1	20
215	Versatility of HDA19-deficiency in increasing the tolerance of Arabidopsis to different environmental stresses. Plant Signaling and Behavior, 2018, 13, 1-4.	1.2	20
216	Bombardment-mediated transformation of plant cells. Journal of Plant Research, 1994, 107, 117-123.	1.2	19

#	Article	IF	CITATIONS
217	Monitoring the Expression Pattern of 1300 Arabidopsis Genes under Drought and Cold Stresses by Using a Full-Length cDNA Microarray. Plant Cell, 2001, 13, 61.	3.1	19
218	Transcriptomic analysis of Arabidopsis thaliana plants treated with the Ky-9 and Ky-72 histone deacetylase inhibitors. Plant Signaling and Behavior, 2018, 13, e1448333.	1.2	19
219	Letter to the Editor: NMR assignment of the hypothetical ENTH-VHS domain At3g16270 from Arabidopsis thaliana. Journal of Biomolecular NMR, 2004, 29, 205-206.	1.6	18
220	Gene coding for SigA-binding protein from Arabidopsis appears to be transcriptionally up-regulated by salicylic acid and NPR1-dependent mechanisms. Journal of General Plant Pathology, 2008, 74, 345-354.	0.6	18
221	Transcriptome Analyses Revealed Diverse Expression Changes in ago1 and hyl1 Arabidopsis Mutants. Plant and Cell Physiology, 2009, 50, 1715-1720.	1.5	18
222	CIPK23 regulates blue lightâ€dependent stomatal opening in <i>Arabidopsis thaliana</i> . Plant Journal, 2020, 104, 679-692.	2.8	18
223	Cassava mosaic disease and its management in Southeast Asia. Plant Molecular Biology, 2022, 109, 301-311.	2.0	18
224	Transgenic Arabidopsis thaliana plants obtained by particle-bombardment-mediated transformation. Applied Microbiology and Biotechnology, 1991, 36, 228-230.	1.7	17
225	PosMed-plus: An Intelligent Search Engine that Inferentially Integrates Cross-Species Information Resources for Molecular Breeding of Plants. Plant and Cell Physiology, 2009, 50, 1249-1259.	1.5	17
226	Analysis of Multiple Occurrences of Alternative Splicing Events in Arabidopsis thaliana Using Novel Sequenced Full-Length cDNAs. DNA Research, 2009, 16, 155-164.	1.5	17
227	Metabolite and Phytohormone Profiling Illustrates Metabolic Reprogramming as an Escape Strategy of Deepwater Rice during Partially Submerged Stress. Metabolites, 2020, 10, 68.	1.3	17
228	Stable transformation of Arabidopsis with thebar gene using particle bombardment. Transgenic Research, 1994, 3, 279-286.	1.3	16
229	Transcriptome analysis in abiotic stress conditions in higher plants. Topics in Current Genetics, 0, , 271-308.	0.7	16
230	Identification of genes regulated by dark adaptation and far-red light illumination in roots of Arabidopsis thaliana*. Plant, Cell and Environment, 2004, 27, 1387-1394.	2.8	16
231	Novel Stress-Inducible Antisense RNAs of Protein-Coding Loci Are Synthesized by RNA-Dependent RNA Polymerase. Plant Physiology, 2017, 175, 457-472.	2.3	16
232	Identification of DNA methylated regions by using methylated DNA immunoprecipitation sequencing in Brassica rapa. Crop and Pasture Science, 2018, 69, 107.	0.7	16
233	Raf-like kinases CBC1 and CBC2 negatively regulate stomatal opening by negatively regulating plasma membrane H+-ATPase phosphorylation in Arabidopsis. Photochemical and Photobiological Sciences, 2020, 19, 88-98.	1.6	16
234	ARTADE2DB: Improved Statistical Inferences for Arabidopsis Gene Functions and Structure Predictions by Dynamic Structure-Based Dynamic Expression (DSDE) Analyses. Plant and Cell Physiology, 2011, 52, 254-264.	1.5	15

#	Article	lF	Citations
235	Overexpression of oligouridylate binding protein 1b results in ABA hypersensitivity. Plant Signaling and Behavior, 2017, 12, e1282591.	1.2	15
236	Live imaging of H3K9 acetylation in plant cells. Scientific Reports, 2017, 7, 45894.	1.6	15
237	The Involvement of Long Noncoding RNAs in Response to Plant Stress. Methods in Molecular Biology, 2019, 1933, 151-171.	0.4	15
238	Roles of subcellular metal homeostasis in crop improvement. Journal of Experimental Botany, 2021, 72, 2083-2098.	2.4	15
239	Existence of three regulatory regions each containing a highly conserved motif in the promoter of plastid-encoded RNA polymerase gene (rpoB). Plant Journal, 1997, 11, 883-890.	2.8	14
240	Regional Insertional Mutagenesis of Specific Genes on the CIC5F11/CIC2B9 Locus of Arabidopsis thaliana Chromosome 5 Using the Ac/Ds Transposon in Combination with the cDNA Scanning Method. Plant and Cell Physiology, 1999, 40, 624-639.	1.5	14
241	Characterization of growth-phase-specific responses to cold in Arabidopsis thaliana suspension-cultured cells. Plant, Cell and Environment, 2008, 31, 354-365.	2.8	14
242	A Highly Specific Genome-Wide Association Study Integrated with Transcriptome Data Reveals the Contribution of Copy Number Variations to Specialized Metabolites in Arabidopsis thaliana Accessions. Molecular Biology and Evolution, 2017, 34, 3111-3122.	3.5	14
243	Field transcriptome analysis reveals a molecular mechanism for cassava-flowering in a mountainous environment in Southeast Asia. Plant Molecular Biology, 2022, 109, 233-248.	2.0	14
244	Overexpression of nicotinamidase 3 (NIC3) gene and the exogenous application of nicotinic acid (NA) enhance drought tolerance and increase biomass in Arabidopsis. Plant Molecular Biology, 2021, 107, 63-84.	2.0	14
245	Transgenic haploid plants ofNicotiana rustica produced by bombardment-mediated transformation of pollen. Transgenic Research, 1995, 4, 341-348.	1.3	13
246	Successful expression in pollen of various plant species of in vitro synthesized mRNA introduced by particle bombardment. Plant Molecular Biology, 1995, 28, 337-341.	2.0	13
247	Transient expression of the \hat{l}^2 -glucuronidase gene in tissues of Arabidopsis thaliana by bombardment-mediated transformation. Molecular Biotechnology, 1999, 11, 251-255.	1.3	13
248	FOX-superroots of Lotus corniculatus, overexpressing Arabidopsis full-length cDNA, show stable variations in morphological traits. Journal of Plant Physiology, 2011, 168, 181-187.	1.6	13
249	Drought stress differentially regulates the expression of small open reading frames (sORFs) in Arabidopsis roots and shoots. Plant Signaling and Behavior, 2016, 11, e1215792.	1.2	13
250	Transcriptome Analysis of the Hierarchical Response of Histone Deacetylase Proteins That Respond in an Antagonistic Manner to Salinity Stress. Frontiers in Plant Science, 2019, 10, 1323.	1.7	13
251	SUPPRESSOR of MAX2 1 (SMAX1) and SMAX1-LIKE2 (SMXL2) Negatively Regulate Drought Resistance in <i>Arabidopsis thaliana</i> . Plant and Cell Physiology, 2023, 63, 1900-1913.	1.5	13
252	Letter to the Editor: NMR assignment of the hypothetical rhodanese domain At4g01050 from Arabidopsis thaliana. Journal of Biomolecular NMR, 2004, 29, 207-208.	1.6	12

#	Article	IF	Citations
253	RIKEN Cassava Initiative: Establishment of a Cassava Functional Genomics Platform. Tropical Plant Biology, 2012, 5, 110-116.	1.0	12
254	Genome-Wide Discovery and Information Resource Development of DNA Polymorphisms in Cassava. PLoS ONE, 2013, 8, e74056.	1.1	12
255	Construction of a Protein Library of Arabidopsis Transcription Factors Using a Wheat Cell-Free Protein Production System and Its Application for DNA Binding Analysis. Bioscience, Biotechnology and Biochemistry, 2009, 73, 1661-1664.	0.6	11
256	RNA Regulation in Plant Cold Stress Response. Advances in Experimental Medicine and Biology, 2018, 1081, 23-44.	0.8	11
257	Inhibition of mitochondrial complex I by the novel compound FSL0260 enhances high salinity-stress tolerance in Arabidopsis thaliana. Scientific Reports, 2020, 10, 8691.	1.6	11
258	The Dynamic Kaleidoscope of RNA Biology in Plants. Plant Physiology, 2020, 182, 1-9.	2.3	11
259	Regulation and Modification of the Epigenome for Enhanced Salinity Tolerance in Crop Plants. , 2018, , 77-91.		10
260	Transient expression of \hat{l}^2 -glucuronidase in plastids of various plant cells and tissues delivered by a pneumatic particle gun. Journal of Plant Research, 1995, 108, 235-240.	1.2	9
261	Rapid construction of a transcription map for a cosmid contig of Arabidopsis thaliana genome using a novel cDNA selection method. Plant Journal, 1997, 12, 481-487.	2.8	9
262	Genomeâ€wide biochemical analysis of Arabidopsis protein phosphatase using a wheat cellâ€free system. FEBS Letters, 2012, 586, 3134-3141.	1.3	9
263	Gene Expression Profiles in Jatropha Under Drought Stress and During Recovery. Plant Molecular Biology Reporter, 2015, 33, 1075-1087.	1.0	9
264	Characterization of Histone H3 Lysine 4 and 36 Tri-methylation in Brassica rapa L Frontiers in Plant Science, 2021, 12, 659634.	1.7	9
265	A flexible representation of omic knowledge for thorough analysis of microarray data. Plant Methods, 2006, 2, 5.	1.9	8
266	Transcriptome Analysis of Plant Drought and Salt Stress Response. , 2007, , 261-283.		8
267	Genome-wide analysis of long noncoding RNAs, 24-nt siRNAs, DNA methylation and H3K27me3 marks in Brassica rapa. PLoS ONE, 2021, 16, e0242530.	1.1	8
268	Exogenous ethanol treatment alleviates oxidative damage of <i>Arabidopsis thaliana</i> under conditions of high-light stress. Plant Biotechnology, 2021, 38, 339-344.	0.5	8
269	Suppressed expression of starch branching enzyme 1 and 2 increases resistant starch and amylose content and modifies amylopectin structure in cassava. Plant Molecular Biology, 2022, 108, 413-427.	2.0	8
270	Sustained defense response via volatile signaling and its epigenetic transcriptional regulation. Plant Physiology, 2022, 189, 922-933.	2.3	8

#	Article	IF	Citations
271	Transcriptional Association between mRNAs and Their Paired Natural Antisense Transcripts Following Fusarium oxysporum Inoculation in Brassica rapa L Horticulturae, 2022, 8, 17.	1.2	8
272	Transient Expression of Foreign Genes in Tissues of Arabidopsis thaliana by Bombardment-Mediated Transformation., 1998, 82, 219-225.		7
273	Intracellular localization of histone deacetylase HDA6 in plants. Journal of Plant Research, 2019, 132, 629-640.	1.2	7
274	Positional correlation analysis improves reconstruction of full-length transcripts and alternative isoforms from noisy array signals or short reads. Bioinformatics, 2012, 28, 929-937.	1.8	6
275	Transcriptome Analysis of Arabidopsis thaliana Plants Treated with a New Compound Natolen128, Enhancing Salt Stress Tolerance. Plants, 2021, 10, 978.	1.6	6
276	Highly Reproducible ChIP-on-Chip Analysis to Identify Genome-Wide Protein Binding and Chromatin Status in Arabidopsis thaliana. Methods in Molecular Biology, 2014, 1062, 405-426.	0.4	6
277	Transient Expression of the .BETAGlucuronidase Gene in Shoot Primordia of Haplopappus gracilis by Use of a Pneumatic Particle Gun Plant Tissue Culture Letters, 1993, 10, 271-274.	0.1	6
278	Ethanol induces heat tolerance in plants by stimulating unfolded protein response. Plant Molecular Biology, 2022, 110, 131-145.	2.0	6
279	An efficient method of propagating cassava plants using aeroponic culture. Journal of Crop Improvement, 2020, 34, 64-83.	0.9	5
280	Jasmonates and Histone deacetylase 6 activate Arabidopsis genome-wide histone acetylation and methylation during the early acute stress response. BMC Biology, 2022, 20, 83.	1.7	5
281	A Transmembrane Hybrid-Type Histidine Kinase in Arabidopsis Functions as an Osmosensor. Plant Cell, 1999, 11, 1743.	3.1	4
282	Expression profile and 5'-terminal structure of Arabidopsis antisense transcripts expressed in seeds. Plant Signaling and Behavior, 2011, 6, 691-693.	1.2	4
283	Sustainable Management of Invasive Cassava Pests in Vietnam, Cambodia, and Thailand., 2018, , 131-157.		4
284	Microarray Analysis for Studying the Abiotic Stress Responses in Plants. , 2010, , 333-355.		4
285	Establishment of framework P1 clones for map-based cloning and genome sequencing: direct RFLP mapping of large clones. Gene, 1998, 225, 31-38.	1.0	3
286	RIKEN Arabidopsis full-length cDNA database. Trends in Plant Science, 2002, 7, 562-563.	4.3	3
287	DRL1 regulates adaxial leaf patterning and shoot apical meristem activity inArabidopsis. Journal of Plant Biology, 2007, 50, 467-474.	0.9	3
288	Monitoring Transcriptomic Changes in Soil-Grown Roots and Shoots of Arabidopsis thaliana Subjected to a Progressive Drought Stress. Methods in Molecular Biology, 2018, 1761, 223-230.	0.4	3

#	Article	IF	CITATIONS
289	The duration of ethanol-induced high-salinity stress tolerance in <i>Arabidopsis thaliana</i> Signaling and Behavior, 2018, 13, 1-3.	1.2	3
290	RNA-Mediated Plant Behavior. Plant and Cell Physiology, 2019, 60, 1893-1896.	1.5	3
291	Transcriptomic analysis of root specific drought mediated response of G. arboreum and G. hirsutum. Biologia (Poland), 2020, 75, 627-636.	0.8	3
292	Evaluation of a cDNA Scanning Method Concerning the Fidelity and Efficiency of cDNA Selection Using the YAC CIC3B1-S Region of Arabidopsis thaliana Chromosome 5. DNA Research, 1999, 6, 247-253.	1.5	2
293	Genomic Analysis of Stress Respnse. , 0, , 248-265.		2
294	Generation of Full-Length cDNA Libraries: Focus on Plants. Methods in Molecular Biology, 2009, 533, 49-68.	0.4	2
295	Field-transcriptome analyses reveal developmental transitions during flowering in cassava (Manihot) Tj ETQq $1\ 1$	0.784314 2.0	rgBT /Overlo
296	Chloroplast Transformation by Particle Bombardment. , 1992, , 413-416.		2
297	Cassava microRNAs and storage root development. Biologia Plantarum, 2019, 63, 193-199.	1.9	1
298	Amplification of Long Targets of Approximately 50 kb from Cloned Cosmid Inserts of Arabidopsis thaliana. DNA Research, 1996, 3, 107-108.	1.5	0
299	Genome-Wide Analysis of RNA Degradation in Arabidopsis. , 2011, , 79-89.		0
300	Editorial. Plant Molecular Biology, 2019, 100, 1-2.	2.0	0
301	Optimization of Gene Delivery Conditions in Roots of Arabidopsis thaliana by Bombardment-mediated Transformation Plant Tissue Culture Letters, 1994, 11, 206-210.	0.1	0
302	Analysis of the 5′-Upstream Region of the Chloroplast RNA Polymerase Gene (rpoB). , 1995, , 2539-2542.		0
303	Agrobacterium-mediated cassava transformation for the Asian elite variety KU50. Plant Molecular Biology, 2022, 109, 271-282.	2.0	0