
Margaret M Kalcic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/157501/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Representing soil health practice effects on soil properties and nutrient loss in a watershedâ€scale hydrologic model. Journal of Environmental Quality, 2023, 52, 537-548.	2.0	5
2	Uncertainty in critical source area predictions from watershed-scale hydrologic models. Journal of Environmental Management, 2021, 279, 111506.	7.8	21
3	Evaluating management options to reduce Lake Erie algal blooms using an ensemble of watershed models. Journal of Environmental Management, 2021, 280, 111710.	7.8	25
4	Bias correction of climate model outputs influences watershed model nutrient load predictions. Science of the Total Environment, 2021, 759, 143039.	8.0	19
5	Quantifying uncertainty cascading from climate, watershed, and lake models in harmful algal bloom predictions. Science of the Total Environment, 2021, 759, 143487.	8.0	11
6	Exploring the effectiveness of drainage water management on water budgets and nitrate loss using three evaluation approaches. Agricultural Water Management, 2021, 243, 106501.	5.6	10
7	Source contribution to phosphorus loads from the Maumee River watershed to Lake Erie. Journal of Environmental Management, 2021, 279, 111803.	7.8	27
8	Exploring the mechanisms behind farmers' perceptions of nutrient loss risk. Agriculture and Human Values, 2021, 38, 839-850.	3.0	4
9	Simulating internal watershed processes using multiple SWAT models. Science of the Total Environment, 2021, 759, 143920.	8.0	21
10	Evaluating the efficacy of targeting options for conservation practice adoption on watershed-scale phosphorus reductions. Water Research, 2021, 201, 117375.	11.3	6
11	Assessing the Accuracy of Farmers' Nutrient Loss Risk Perceptions. Environmental Management, 2021, 68, 539-552.	2.7	0
12	A Public-Private Partnership to Locate Fields for Implementation and Monitoring of Best Management Practices to Treat Legacy Phosphorus. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	2
13	Performance of a Ditch-Style Phosphorus Removal Structure for Treating Agricultural Drainage Water with Aluminum-Treated Steel Slag. Water (Switzerland), 2020, 12, 2149.	2.7	13
14	The hydrologic model as a source of nutrient loading uncertainty in a future climate. Science of the Total Environment, 2020, 724, 138004.	8.0	14
15	On Quantifying Water Quality Benefits of Healthy Soils. BioScience, 2020, 70, 343-352.	4.9	23
16	Optimizing climate model selection for hydrological modeling: A case study in the Maumee River basin using the SWAT. Journal of Hydrology, 2020, 588, 125064.	5.4	18
17	Best Management Practices and Nutrient Reduction: An Integrated Economic-Hydrologic Model of the Western Lake Erie Basin. Land Economics, 2020, 96, 510-530.	0.9	18
18	The Closer, the Better? Untangling Scientist–Practitioner Engagement, Interaction, and Knowledge Use. Weather, Climate, and Society, 2019, 11, 535-548.	1.1	24

MARGARET M KALCIC

#	Article	IF	CITATIONS
19	Modeling Flow, Nutrient, and Sediment Delivery from a Large International Watershed Using a Field‧cale SWAT Model. Journal of the American Water Resources Association, 2019, 55, 1288-1305.	2.4	10
20	Climate Change and Nutrient Loading in the Western Lake Erie Basin: Warming Can Counteract a Wetter Future. Environmental Science & Technology, 2019, 53, 7543-7550.	10.0	42
21	Modeling phosphorus reduction strategies from the international St. Clair-Detroit River system watershed. Journal of Great Lakes Research, 2019, 45, 742-751.	1.9	15
22	Manure Management at Ohio Confined Animal Feeding Facilities in the Maumee River Watershed. Journal of Great Lakes Research, 2019, 45, 1162-1170.	1.9	14
23	Evaluating the impact of climate change on fluvial flood risk in a mixed-use watershed. Environmental Modelling and Software, 2019, 122, 104031.	4.5	39
24	Use of manure nutrients from concentrated animal feeding operations. Journal of Great Lakes Research, 2018, 44, 245-252.	1.9	39
25	On the practical usefulness of least squares for assessing uncertainty in hydrologic and water quality predictions. Environmental Modelling and Software, 2018, 105, 286-295.	4.5	12
26	Multiple models guide strategies for agricultural nutrient reductions. Frontiers in Ecology and the Environment, 2017, 15, 126-132.	4.0	118
27	Pay-for-Performance Conservation Using SWAT Highlights Need for Field-Level Agricultural Conservation. Transactions of the ASABE, 2017, 60, 1925-1937.	1.1	12
28	Risk Communication and Climate Justice Planning: A Case of Michigan's Huron River Watershed. Urban Planning, 2017, 2, 34-50.	1.3	4
29	Evaluating the Impact of Legacy P and Agricultural Conservation Practices on Nutrient Loads from the Maumee River Watershed. Environmental Science & amp; Technology, 2016, 50, 8146-8154.	10.0	93
30	Adaptive Targeting: Engaging Farmers to Improve Targeting and Adoption of Agricultural Conservation Practices. Journal of the American Water Resources Association, 2015, 51, 973-991.	2.4	21
31	Spatial Optimization of Six Conservation Practices Using Swat inÂTileâ€Drained Agricultural Watersheds. Journal of the American Water Resources Association, 2015, 51, 956-972.	2.4	42
32	Ecosystem services and Indiana agriculture: farmers' and conservationists' perceptions. International Journal of Biodiversity Science, Ecosystem Services & Management, 2015, 11, 264-282.	2.9	17
33	An In-depth Examination of Farmers' Perceptions of Targeting Conservation Practices. Environmental Management, 2014, 54, 795-813.	2.7	38