List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1574470/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-Quality Metal Oxide Core/Shell Nanowire Arrays on Conductive Substrates for Electrochemical Energy Storage. ACS Nano, 2012, 6, 5531-5538.	7.3	972
2	Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. Journal of Materials Chemistry, 2011, 21, 9319.	6.7	669
3	Hierarchical NiCo ₂ O ₄ @NiCo ₂ O ₄ Core/Shell Nanoflake Arrays as High-Performance Supercapacitor Materials. ACS Applied Materials & Interfaces, 2013, 5, 8790-8795.	4.0	491
4	Freestanding Co3O4 nanowire array for high performance supercapacitors. RSC Advances, 2012, 2, 1835.	1.7	414
5	Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition. Solar Energy Materials and Solar Cells, 2008, 92, 628-633.	3.0	386
6	Mesoporous Co3O4 monolayer hollow-sphere array as electrochemical pseudocapacitor material. Chemical Communications, 2011, 47, 5786.	2.2	307
7	Metal oxide/hydroxide-based materials for supercapacitors. RSC Advances, 2014, 4, 41910-41921.	1.7	304
8	Hierarchically porous NiO film grown by chemical bath depositionvia a colloidal crystal template as an electrochemical pseudocapacitor material. Journal of Materials Chemistry, 2011, 21, 671-679.	6.7	282
9	Deep eutectic solvents (DESs)-derived advanced functional materials for energy and environmental applications: challenges, opportunities, and future vision. Journal of Materials Chemistry A, 2017, 5, 8209-8229.	5.2	274
10	Advances in coatings on biodegradable magnesium alloys. Journal of Magnesium and Alloys, 2020, 8, 42-65.	5.5	274
11	Graphene Sheet/Porous NiO Hybrid Film for Supercapacitor Applications. Chemistry - A European Journal, 2011, 17, 10898-10905.	1.7	266
12	Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance. Journal of Materials Chemistry, 2011, 21, 5492.	6.7	264
13	One-dimension MnCo2O4 nanowire arrays for electrochemical energy storage. Electrochimica Acta, 2014, 116, 467-474.	2.6	259
14	Tribological Behavior of Carbon-Nanotube-Filled PTFE Composites. Tribology Letters, 2003, 15, 275-278.	1.2	257
15	Robust Slippery Coating with Superior Corrosion Resistance and Anti-Icing Performance for AZ31B Mg Alloy Protection. ACS Applied Materials & Interfaces, 2017, 9, 11247-11257.	4.0	225
16	Growth and Photocatalytic Activity of Dendrite-like ZnO@Ag Heterostructure Nanocrystals. Crystal Growth and Design, 2009, 9, 3278-3285.	1.4	206
17	Co3O4–C core–shell nanowire array as an advanced anode material for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 15056.	6.7	202
18	Electrochemical Synthesis of Silver Polyhedrons and Dendritic Films with Superhydrophobic Surfaces. Langmuir, 2008, 24, 12010-12016.	1.6	192

#	Article	IF	CITATIONS
19	Periodic stacking of 2D charged sheets: Self-assembled superlattice of Ni–Al layered double hydroxide (LDH) and reduced graphene oxide. Nano Energy, 2016, 20, 185-193.	8.2	188
20	High corrosion-resistance nanocrystalline Ni coating on AZ91D magnesium alloy. Surface and Coatings Technology, 2006, 200, 5413-5418.	2.2	187
21	One-Step Fabrication of Nanostructured Ni Film with Lotus Effect from Deep Eutectic Solvent. Langmuir, 2011, 27, 10132-10140.	1.6	186
22	An all-solid-state electrochromic device based on NiO/WO3 complementary structure and solid hybrid polyelectrolyte. Solar Energy Materials and Solar Cells, 2009, 93, 1840-1845.	3.0	170
23	Tribological properties of carbon-nanotube-reinforced copper composites. Tribology Letters, 2001, 10, 225-228.	1.2	159
24	Morphology effect on the electrochromic and electrochemical performances of NiO thin films. Electrochimica Acta, 2008, 53, 5721-5724.	2.6	153
25	A study and application of zinc phosphate coating on AZ91D magnesium alloy. Surface and Coatings Technology, 2006, 200, 3021-3026.	2.2	152
26	Spherical NiO-C composite for anode material of lithium ion batteries. Electrochimica Acta, 2007, 52, 4177-4181.	2.6	152
27	Multicolor electrochromic polyaniline–WO3 hybrid thin films: One-pot molecular assembling synthesis. Journal of Materials Chemistry, 2011, 21, 17316.	6.7	141
28	Electrochromic behavior of WO3 nanotree films prepared by hydrothermal oxidation. Solar Energy Materials and Solar Cells, 2011, 95, 2107-2112.	3.0	141
29	Porous reduced graphene oxide sheet wrapped silicon composite fabricated by steam etching for lithium-ion battery application. Journal of Power Sources, 2015, 286, 431-437.	4.0	141
30	Electrodeposition of Ni–Co alloys from a deep eutectic solvent. Surface and Coatings Technology, 2012, 206, 3632-3638.	2.2	140
31	A three-dimensional hierarchical Fe2O3@NiO core/shell nanorod array on carbon cloth: a new class of anode for high-performance lithium-ion batteries. Nanoscale, 2013, 5, 7906.	2.8	140
32	Co-doped NiO nanoflake array films with enhanced electrochromic properties. Journal of Materials Chemistry C, 2014, 2, 7013-7021.	2.7	140
33	Hollow metallic 1T MoS ₂ arrays grown on carbon cloth: a freestanding electrode for sodium ion batteries. Journal of Materials Chemistry A, 2018, 6, 18318-18324.	5.2	133
34	Ni ₂ P/Graphene Sheets as Anode Materials with Enhanced Electrochemical Properties versus Lithium. Journal of Physical Chemistry C, 2012, 116, 22217-22225.	1.5	132
35	Electroless Ni–P plating on AZ91D magnesium alloy from a sulfate solution. Journal of Alloys and Compounds, 2005, 391, 104-109.	2.8	127
36	Controllable Synthesis of a Monophase Nickel Phosphide/Carbon (Ni ₅ P ₄ /C) Composite Electrode via Wet hemistry and a Solid‧tate Reaction for the Anode in Lithium Secondary Batteries. Advanced Functional Materials, 2012, 22, 3927-3935.	7.8	125

#	Article	IF	CITATIONS
97	A Newly Designed Composite Gel Polymer Electrolyte Based on Poly(Vinylidene) Tj ETQq1 1 0.784314 rgBT /Over		50 747 Td
37	- A European Journal, 2017, 23, 15203-15209.	1.7	117
38	A poly (vinylidene fluoride-hexafluoropropylene) based three-dimensional network gel polymer electrolyte for solid-state lithium-sulfur batteries. Chemical Engineering Journal, 2019, 358, 1047-1053.	6.6	116
39	Efficient electrochromic materials based on TiO2@WO3 core/shell nanorod arrays. Solar Energy Materials and Solar Cells, 2013, 117, 231-238.	3.0	114
40	Growth of vertically aligned hierarchical WO3 nano-architecture arrays on transparent conducting substrates with outstanding electrochromic performance. Solar Energy Materials and Solar Cells, 2014, 124, 103-110.	3.0	114
41	Enhanced tensile ductility in an electrodeposited nanocrystalline Ni. Scripta Materialia, 2006, 54, 579-584.	2.6	113
42	Self-assembly of Si/honeycomb reduced graphene oxide composite film as a binder-free and flexible anode for Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 5834-5840.	5.2	113
43	Electroless Ni–P deposition plus zinc phosphate coating on AZ91D magnesium alloy. Surface and Coatings Technology, 2006, 200, 5956-5962.	2.2	109
44	Facile synthesis of Ni-coated Ni2P for supercapacitor applications. CrystEngComm, 2013, 15, 7071.	1.3	106
45	NiO nanoflakes grown on porous graphene frameworks as advanced electrochemical pseudocapacitor materials. Journal of Power Sources, 2014, 259, 98-105.	4.0	106
46	lonothermal synthesis and lithium storage performance of core/shell structured amorphous@crystalline Ni–P nanoparticles. CrystEngComm, 2012, 14, 7942.	1.3	104
47	Hierarchical structure Ti-doped WO3 film with improved electrochromism in visible-infrared region. RSC Advances, 2013, 3, 6896.	1.7	103
48	Corrosion resistance of AZ31B magnesium alloy with a conversion coating produced from a choline chloride—Urea based deep eutectic solvent. Corrosion Science, 2016, 106, 108-116.	3.0	99
49	High corrosion-resistant Ni–P/Ni/Ni–P multilayer coatings on steel. Surface and Coatings Technology, 2005, 197, 61-67.	2.2	97
50	Rationally Designed Silicon Nanostructures as Anode Material for Lithiumâ€lon Batteries. Advanced Engineering Materials, 2018, 20, 1700591.	1.6	97
51	Enhanced electrochromic performance of macroporous WO3 films formed by anodic oxidation of DC-sputtered tungsten layers. Electrochimica Acta, 2010, 55, 6953-6958.	2.6	96
52	Simple synthesis of surface-modified hierarchical copper oxide spheres with needle-like morphology as anode for lithium ion batteries. Electrochimica Acta, 2010, 55, 1820-1824.	2.6	94
53	Original growth mechanism for ultra-stable dendrite-free potassium metal electrode. Nano Energy, 2019, 62, 367-375.	8.2	93
54	Constructed TiO ₂ /NiO Core/Shell Nanorod Array for Efficient Electrochromic Application. Journal of Physical Chemistry C, 2014, 118, 6690-6696.	1.5	90

#	Article	IF	CITATIONS
55	Integrated 3D porous C-MoS2/nitrogen-doped graphene electrode for high capacity and prolonged stability lithium storage. Journal of Power Sources, 2015, 296, 392-399.	4.0	90
56	Three-dimensional porous nano-Ni supported silicon composite film for high-performance lithium-ion batteries. Journal of Power Sources, 2012, 213, 106-111.	4.0	88
57	All-solid-state electrochromic devices based on WO3 NiO films: material developments and future applications. Science China Chemistry, 2017, 60, 3-12.	4.2	88
58	Self-assembly silicon/porous reduced graphene oxide composite film as a binder-free and flexible anode for lithium-ion batteries. Electrochimica Acta, 2015, 156, 86-93.	2.6	87
59	A novel durable double-conductive core-shell structure applying to the synthesis of silicon anode for lithium ion batteries. Journal of Power Sources, 2018, 384, 207-213.	4.0	87
60	SnO ₂ Nanoflake Arrays Coated with Polypyrrole on a Carbon Cloth as Flexible Anodes for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 24198-24204.	4.0	81
61	Binder-free network-enabled MoS2-PPY-rGO ternary electrode for high capacity and excellent stability of lithium storage. Journal of Power Sources, 2016, 307, 510-518.	4.0	80
62	Enhanced high rate properties of ordered porous Cu2O film as anode for lithium ion batteries. Electrochimica Acta, 2010, 55, 4921-4925.	2.6	79
63	One-step fabrication of nanostructured NiO films from deep eutectic solvent with enhanced electrochromic performance. Journal of Materials Chemistry A, 2013, 1, 4286.	5.2	76
64	NiO electrode for methanol electro-oxidation: Mesoporous vs. nanoparticulate. International Journal of Hydrogen Energy, 2014, 39, 10892-10901.	3.8	76
65	A peanut-like hierarchical micro/nano-Li _{1.2} Mn _{0.54} Ni _{0.18} Co _{0.08} O ₂ catho material for lithium-ion batteries with enhanced electrochemical performance. Journal of Materials Chemistry A, 2015, 3, 14291-14297.	odę.2	76
66	Facile interfacial modification via in-situ ultraviolet solidified gel polymer electrolyte for high-performance solid-state lithium ion batteries. Journal of Power Sources, 2019, 409, 31-37.	4.0	76
67	High-energy cathode materials for Li-ion batteries: A review of recent developments. Science China Technological Sciences, 2015, 58, 1809-1828.	2.0	74
68	Non-aqueous electrodeposition of porous tin-based film as an anode for lithium-ion battery. Journal of Power Sources, 2012, 214, 200-207.	4.0	73
69	Enhanced electrochromic performance of highly ordered, macroporous WO3 arrays electrodeposited using polystyrene colloidal crystals as template. Electrochimica Acta, 2013, 99, 1-8.	2.6	72
70	Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries. Journal of Power Sources, 2018, 374, 107-112.	4.0	71
71	Micro/Nanobinary Structure of Silver Films on Copper Alloys with Stable Water-Repellent Property under Dynamic Conditions. Langmuir, 2009, 25, 12299-12307.	1.6	70
72	Influence of electrodeposition conditions on the microstructure and corrosion resistance of Zn–Ni alloy coatings from a deep eutectic solvent. Surface and Coatings Technology, 2014, 242, 34-41.	2.2	70

#	Article	IF	CITATIONS
73	Microstructure, nanoindentation, and electrochemical properties of the nanocrystalline nickel film electrodeposited from choline chloride–ethylene glycol. Surface and Coatings Technology, 2011, 205, 4928-4933.	2.2	68
74	The direct growth of a WO ₃ nanosheet array on a transparent conducting substrate for highly efficient electrochromic and electrocatalytic applications. CrystEngComm, 2014, 16, 6866-6872.	1.3	67
75	Enhanced rate capability of multi-layered ordered porous nickel phosphide film as anode for lithium ion batteries. Journal of Power Sources, 2011, 196, 379-385.	4.0	66
76	In situ growth and electrochemical characterization versus lithium of a core/shell-structured Ni2P@C nanocomposite synthesized by a facile organic-phase strategy. Journal of Materials Chemistry, 2011, 21, 17988.	6.7	65
77	Silicon/graphene-sheet hybrid film as anode for lithium ion batteries. Electrochemistry Communications, 2012, 23, 17-20.	2.3	65
78	Hierarchical MoS ₂ /Carbon Composite Microspheres as Advanced Anodes for Lithium/Sodiumâ€lon Batteries. Chemistry - A European Journal, 2018, 24, 11220-11226.	1.7	65
79	Nanostructuring and improved performance of ternary Bi–Sb–Te thermoelectric materials. Applied Physics A: Materials Science and Processing, 2008, 92, 321-324.	1.1	63
80	Electrochemical Synthesis and Characterization of Ni–P Alloy Coatings from Eutectic–Based Ionic Liquid. Journal of the Electrochemical Society, 2012, 159, D642-D648.	1.3	62
81	Hydrophobic epoxy resin coating with ionic liquid conversion pretreatment on magnesium alloy for promoting corrosion resistance. Journal of Materials Science and Technology, 2020, 37, 9-18.	5.6	62
82	<i>In situ</i> formation of a Li ₃ N-rich interface between lithium and argyrodite solid electrolyte enabled by nitrogen doping. Journal of Materials Chemistry A, 2021, 9, 13531-13539.	5.2	62
83	Strain rate sensitivity of face-centered-cubic nanocrystalline materials based on dislocation deformation. Journal of Applied Physics, 2006, 99, 076103.	1.1	61
84	Effect of carbon coating on low temperature electrochemical performance of LiFePO4/C by using polystyrene sphere as carbon source. Electrochimica Acta, 2011, 56, 5054-5059.	2.6	60
85	Porous NiO/poly(3,4-ethylenedioxythiophene) films as anode materials for lithium ion batteries. Journal of Power Sources, 2010, 195, 1207-1210.	4.0	59
86	Carbonâ€Decorated Singleâ€Crystalline Ni ₂ P Nanotubes Derived from Ni Nanowire Templates: A Highâ€Performance Material for Liâ€Ion Batteries. Chemistry - A European Journal, 2012, 18, 6031-6038.	1.7	59
87	Anchoring Ni ₂ P Sheets on NiCo ₂ O ₄ Nanocone Arrays as Optimized Bifunctional Electrocatalyst for Water Splitting. Advanced Materials Interfaces, 2017, 4, 1700481.	1.9	59
88	Anchoring three-dimensional network structured Ni–P nanowires on reduced graphene oxide and their enhanced electrocatalytic activity towards methanol oxidation. Electrochemistry Communications, 2013, 35, 108-111.	2.3	57
89	Ultra fast electrochromic switching of nanostructured NiO films electrodeposited from choline chloride-based ionic liquid. Electrochimica Acta, 2013, 87, 341-347.	2.6	57
90	Self-assembly of hierarchical Fe ₃ O ₄ microsphere/graphene nanosheet composite: towards a promising high-performance anode for Li-ion batteries. RSC Advances, 2014, 4, 322-330.	1.7	57

#	Article	IF	CITATIONS
91	A Smart Superhydrophobic Coating on AZ31B Magnesium Alloy with Selfâ€Healing Effect. Advanced Materials Interfaces, 2016, 3, 1500694.	1.9	57
92	A multicolor electrochromic film based on a SnO ₂ /V ₂ O ₅ core/shell structure for adaptive camouflage. Journal of Materials Chemistry C, 2019, 7, 5702-5709.	2.7	57
93	Thermochromic behavior of chloro-nickel(II) in deep eutectic solvents and their application in thermochromic composite films. RSC Advances, 2011, 1, 1220.	1.7	56
94	Three-dimensional porous nano-Ni/Fe3O4 composite film: enhanced electrochemical performance for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 18639.	6.7	56
95	Hollow Li1.2Mn0.5Co0.25Ni0.05O2 microcube prepared by binary template as a cathode material for lithium ion batteries. Journal of Power Sources, 2014, 257, 198-204.	4.0	56
96	Urchin-like Ni-Co-P-O nanocomposite as novel methanol electro-oxidation materials in alkaline environment. Electrochimica Acta, 2016, 187, 11-19.	2.6	56
97	Electrochemical performances of nanostructured Ni3P–Ni films electrodeposited on nickel foam substrate. Journal of Power Sources, 2008, 185, 519-525.	4.0	55
98	A strategy of fast reversible wettability changes of WO3 surfaces between superhydrophilicity and superhydrophobicity. Journal of Colloid and Interface Science, 2010, 352, 573-579.	5.0	55
99	A Versatile Li _{6.5} In _{0.25} P _{0.75} S ₅ I Sulfide Electrolyte Triggered by Ultimateâ€Energy Mechanical Alloying for Allâ€Solidâ€State Lithium Metal Batteries. Advanced Energy Materials, 2021, 11, 2101521.	10.2	55
100	Effect of EDTA and NH4Cl additives on electrodeposition of Zn–Ni films from choline chloride-based ionic liquid. Transactions of Nonferrous Metals Society of China, 2015, 25, 2054-2064.	1.7	53
101	Bias-graded deposition and tribological properties of Ti-contained a-C gradient composite film on Ti6Al4V alloy. Applied Surface Science, 2013, 279, 450-457.	3.1	52
102	Recent Developments of Allâ€Solidâ€State Lithium Secondary Batteries with Sulfide Inorganic Electrolytes. Chemistry - A European Journal, 2018, 24, 6007-6018.	1.7	52
103	Large-scale synthesis of porous Ni2P nanosheets for lithium secondary batteries. CrystEngComm, 2012, 14, 8633.	1.3	51
104	Hierarchical SnO ₂ @NiO core/shell nanoflake arrays as energy-saving electrochromic materials. Journal of Materials Chemistry C, 2014, 2, 10409-10417.	2.7	51
105	Boosting Highâ€Rate Sodium Storage Performance of Nâ€Doped Carbonâ€Encapsulated Na ₃ V ₂ (PO ₄) ₃ Nanoparticles Anchoring on Carbon Cloth. Small, 2019, 15, e1902432.	5.2	51
106	Improved Ionic Conductivity and Li Dendrite Suppression Capability toward Li ₇ P ₃ S ₁₁ -Based Solid Electrolytes Triggered by Nb and O Cosubstitution. ACS Applied Materials & Interfaces, 2020, 12, 54662-54670.	4.0	50
107	Synthesis of dinickel phosphide (Ni2P) for fast lithium-ion transportation: a new class of nanowires with exceptionally improved electrochemical performance as a negative electrode. RSC Advances, 2012, 2, 3430.	1.7	49
108	Friction and Wear Properties of IF–MoS2 as Additive in Paraffin Oil. Tribology Letters, 2005, 20, 247-250.	1.2	47

#	Article	IF	CITATIONS
109	Fabrication of highly ordered porous nickel phosphide film and its electrochemical performances toward lithium storage. Journal of Alloys and Compounds, 2011, 509, 157-160.	2.8	47
110	Electrodeposition, structural, and corrosion properties of Cu films from a stable deep eutectics system with additive of ethylene diamine. Surface and Coatings Technology, 2012, 209, 117-123.	2.2	47
111	Niobium doped tungsten oxide mesoporous film with enhanced electrochromic and electrochemical energy storage properties. Journal of Colloid and Interface Science, 2019, 535, 300-307.	5.0	46
112	A Stretchable and Safe Polymer Electrolyte with a Protecting‣ayer Strategy for Solidâ€State Lithium Metal Batteries. Advanced Science, 2021, 8, 2003241.	5.6	46
113	In situ confocal microscopic observation on inhibiting the dendrite formation of a-CN _x /Li electrode. Journal of Materials Chemistry A, 2016, 4, 15597-15604.	5.2	45
114	Polypyrrole-Coated Sodium Manganate Hollow Microspheres as a Superior Cathode for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 15630-15637.	4.0	45
115	A Facile Way to Construct Stable and Ionic Conductive Lithium Sulfide Nanoparticles Composed Solid Electrolyte Interphase on Li Metal Anode. Advanced Functional Materials, 2021, 31, 2006380.	7.8	43
116	Stabilizing the interphase between Li and Argyrodite electrolyte through synergistic phosphating process for all-solid-state lithium batteries. Nano Energy, 2022, 96, 107104.	8.2	43
117	Cobalt nanomountain array supported silicon film anode for high-performance lithium ion batteries. Electrochimica Acta, 2013, 88, 664-670.	2.6	42
118	Enhancement of the advanced Na storage performance of Na ₃ V ₂ (PO ₄) ₃ in a symmetric sodium full cell <i>via</i> a dual strategy design. Journal of Materials Chemistry A, 2019, 7, 10231-10238.	5.2	42
119	Ionic-liquid-containing polymer interlayer modified PEO-based electrolyte for stable high-voltage solid-state lithium metal battery. Chemical Engineering Journal, 2021, 424, 130522.	6.6	42
120	Improved electrochromic performance of hierarchically porous Co3O4 array film through self-assembled colloidal crystal template. Electrochimica Acta, 2010, 55, 989-994.	2.6	41
121	Layered nanostructured Ni with modulated hardness fabricated by surfactant-assistant electrodeposition. Scripta Materialia, 2007, 57, 233-236.	2.6	40
122	Growth of and methanol electro-oxidation by gold nanowires with high density stacking faults. Journal of Materials Chemistry, 2011, 21, 4843.	6.7	39
123	Nonâ€Newtonian Fluid State K–Na Alloy for a Stretchable Energy Storage Device. Small Methods, 2019, 3, 1900383.	4.6	39
124	Electrochemical synthesis and optical properties of ZnO thin film on In2O3:Sn (ITO)-coated glass. Applied Surface Science, 2007, 253, 7011-7015.	3.1	36
125	Ductile–brittle–ductile transition in an electrodeposited 13 nanometer grain sized Ni–8.6wt.% Co alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 459, 75-81.	2.6	36
126	A NiCo ₂ O ₄ Shell on a Hollow Ni Nanorod Array Core for Water Splitting with Enhanced Electrocatalytic Performance. ChemNanoMat, 2018, 4, 124-131.	1.5	34

#	Article	IF	CITATIONS
127	Ultrafast Synthesis of Iâ€Rich Lithium Argyrodite Glass–Ceramic Electrolyte with High Ionic Conductivity. Advanced Materials, 2022, 34, e2107346.	11.1	34
128	Deformation mechanism transition caused by strain rate in a pulse electric brush-plated nanocrystalline Cu. Journal of Applied Physics, 2008, 104, .	1.1	33
129	Cobalt disulfide-modified cellular hierarchical porous carbon derived from bovine bone for application in high-performance lithium–sulfur batteries. Journal of Colloid and Interface Science, 2019, 551, 219-226.	5.0	33
130	Electrodeposition, Morphology, Composition, and Corrosion Performance of Zn-Mn Coatings from a Deep Eutectic Solvent. Journal of Materials Engineering and Performance, 2015, 24, 434-444.	1.2	32
131	Endowing manganese oxide with fast adsorption ability through controlling the manganese carbonate precursor assembled in ionic liquid. Journal of Colloid and Interface Science, 2015, 438, 149-158.	5.0	32
132	Thermal growth of NiO on interconnected Ni–P tube network for electrochemical oxidation of methanol in alkaline medium. International Journal of Hydrogen Energy, 2016, 41, 6342-6352.	3.8	32
133	Integrated reduced graphene oxide multilayer/Li composite anode for rechargeable lithium metal batteries. RSC Advances, 2016, 6, 11657-11664.	1.7	31
134	Ionic Liquid-Impregnated ZIF-8/Polypropylene Solid-like Electrolyte for Dendrite-free Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 6859-6868.	4.0	31
135	One-pot synthesis of SnO2/reduced graphene oxide nanocomposite in ionic liquid-based solution and its application for lithium ion batteries. Materials Research Bulletin, 2013, 48, 4112-4117.	2.7	29
136	A cleverly designed asymmetrical composite electrolyte via in-situ polymerization for high-performance, dendrite-free solid state lithium metal battery. Chemical Engineering Journal, 2022, 435, 135030.	6.6	29
137	Synthesis of reduced graphene oxide by an ionothermal method and electrochemical performance. RSC Advances, 2013, 3, 11807.	1.7	28
138	Microstructure, mechanical and tribological properties of a-C/a-C:Ti nanomultilayer film. Surface and Coatings Technology, 2013, 232, 403-411.	2.2	28
139	Mechanical and tribological properties of a-C/a-C:Ti multilayer films with various bilayer periods. Thin Solid Films, 2014, 558, 176-183.	0.8	28
140	Spinel type CoFe oxide porous nanosheets as magnetic adsorbents with fast removal ability and facile separation. Journal of Colloid and Interface Science, 2015, 454, 134-143.	5.0	28
141	Mechanical Properties and in Vitro and in Vivo Biocompatibility of a-C/a-C:Ti Nanomultilayer Films on Ti6Al4V Alloy as Medical Implants. ACS Applied Materials & Interfaces, 2017, 9, 15933-15942.	4.0	28
142	Electrocarving during Electrodeposition Growth. Advanced Materials, 2018, 30, e1805686.	11.1	28
143	Fabrication of high aspect ratio through-wafer copper interconnects by reverse pulse electroplating. Journal of Micromechanics and Microengineering, 2009, 19, 065011.	1.5	27
144	Microstructure and corrosion behavior of Cr and Cr–P alloy coatings electrodeposited from a Cr(<scp>iii</scp>) deep eutectic solvent. RSC Advances, 2015, 5, 71268-71277.	1.7	27

#	Article	IF	CITATIONS
145	Mechanically assisted electroplating of Ni–P coatings on carbon steel. Surface and Coatings Technology, 2008, 202, 6023-6028.	2.2	26
146	Growth of nickel phosphide films as anodes for lithium-ion batteries: Based on a novel method for synthesis of nickel films using ionic liquids. Electrochimica Acta, 2013, 112, 212-220.	2.6	26
147	Graphene oxide modified metallic lithium electrode and its electrochemical performances in lithium–sulfur full batteries and symmetric lithium–metal coin cells. RSC Advances, 2016, 6, 66161-66168.	1.7	25
148	Fabrication and corrosion property of conversion films on magnesium alloy from deep eutectic solvent. Surface and Coatings Technology, 2018, 344, 702-709.	2.2	25
149	Sodium-rich manganese oxide porous microcubes with polypyrrole coating as a superior cathode for sodium ion full batteries. Journal of Colloid and Interface Science, 2020, 565, 218-226.	5.0	25
150	Porous Polyamide Skeleton-Reinforced Solid-State Electrolyte: Enhanced Flexibility, Safety, and Electrochemical Performance. ACS Applied Materials & Interfaces, 2021, 13, 11018-11025.	4.0	25
151	Robust Li ₆ PS ₅ I Interlayer to Stabilize the Tailored Electrolyte Li _{9.95} SnP ₂ S _{11.95} F _{0.05} /Li Metal Interface. ACS Applied Materials & Interfaces, 2021, 13, 30739-30745.	4.0	24
152	Slippery coatings with mechanical robustness and self-replenishing properties as potential application on magnesium alloys. Chemical Engineering Journal, 2021, 418, 129079.	6.6	24
153	In-situ generated Li3N/Li-Al alloy in reduced graphene oxide framework optimizing ultra-thin lithium metal electrode for solid-state batteries. Energy Storage Materials, 2022, 49, 546-554.	9.5	24
154	Electrodeposition of Superhydrophobic Cu Film on Active Substrate from Deep Eutectic Solvent. Journal of the Electrochemical Society, 2015, 162, D313-D319.	1.3	23
155	Anomalous self-reduction of layered double hydroxide (LDH): from α-Ni(OH) ₂ to hexagonal close packing (HCP) Ni/NiO by annealing without a reductant. Chemical Communications, 2015, 51, 1004-1007.	2.2	23
156	Heterovalent Cation Substitution to Enhance the Ionic Conductivity of Halide Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 47610-47618.	4.0	23
157	Carbon fiber-incorporated sulfur/carbon ternary cathode for lithium–sulfur batteries with enhanced performance. Journal of Solid State Electrochemistry, 2017, 21, 1203-1210.	1.2	22
158	Pseudocapacitive material with 928â€⁻mAhâ€⁻cmâ^'3 particle-level volumetric specific capacity enabled by continuous phase-transition. Chemical Engineering Journal, 2018, 338, 211-217.	6.6	22
159	Potassium Hexafluorophosphate Additive Enables Stable Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 56017-56026.	4.0	22
160	Sodium-storage behavior of electron-rich element-doped amorphous carbon. Applied Physics Reviews, 2021, 8, .	5.5	22
161	Performance Enhancement of a Sulfur/Carbon Cathode by Polydopamine as an Efficient Shell for Highâ€Performance Lithium–Sulfur Batteries. Chemistry - A European Journal, 2017, 23, 10610-10615.	1.7	21
162	Exploring the Stability Effect of the Co-Substituted P2-Na _{0.67} [Mn _{0.67} Ni _{0.33}]O ₂ Cathode for Liquid- and Solid-State Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 41477-41484.	4.0	21

#	Article	IF	CITATIONS
163	The electrochemical and mechanical properties of Ti incorporated amorphous carbon films in Hanks' solution. Applied Surface Science, 2010, 256, 4859-4866.	3.1	20
164	Targeted Growth of Pt on 2D Atomic Layers of Ni-Al Hydroxide: Assembly of the Pt/Exfoliated Ni-Al Hydroxide sheet/Graphene Composite as Electrocatalysts for Methanol Oxidation Reactions. Electrochimica Acta, 2016, 222, 938-945.	2.6	20
165	Singleâ€Crystalâ€Layered Niâ€Rich Oxide Modified by Phosphate Coating Boosting Interfacial Stability of Li ₁₀ SnP ₂ S ₁₂ â€Based Allâ€Solidâ€State Li Batteries. Small, 2021, 17, e2103830.	5.2	19
166	Enhanced Liâ€Storage of Ni ₃ S ₂ Nanowire Arrays with Nâ€Doped Carbon Coating Synthesized by Oneâ€Step CVD Process and Investigated Via Ex Situ TEM. Small, 2019, 15, e1904433.	5.2	18
167	Porous Composite Gel Polymer Electrolyte with Interfacial Transport Pathways for Flexible Quasi Solid Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 23743-23750.	4.0	18
168	Fast synthesis and optical property of SnO nanoparticles from choline chloride-based ionic liquid. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	17
169	Potentiodynamical deposition and corrosion behavior of thin Zn-Sn coatings with layered structure and varied composition from deep eutectic solvent. Surface and Coatings Technology, 2017, 320, 640-647.	2.2	17
170	Fluorinated Interface Layer with Embedded Zinc Nanoparticles for Stable Lithium-Metal Anodes. ACS Applied Materials & Interfaces, 2021, 13, 17690-17698.	4.0	17
171	Selfâ€Assembled Structure Evolution of MnFe Oxides for High Temperature Thermochemical Energy Storage. Small, 2021, 17, e2101524.	5.2	17
172	Highly Efficient Bifunctional Catalyst of NiCo ₂ O ₄ @NiO@Ni Core/Shell Nanocone Array for Stable Overall Water Splitting. Particle and Particle Systems Characterization, 2017, 34, 1700228.	1.2	16
173	A black conversion coating produced by hot corrosion of magnesium with deep eutectic solvent membrane. Surface and Coatings Technology, 2019, 357, 833-840.	2.2	16
174	Building superior layered oxide cathode via rational surface engineering for both liquid & solid-state sodium ion batteries. Chemical Engineering Journal, 2021, 421, 127788.	6.6	16
175	A mono-comb poly (siloxane-g-ethylene oxide) electrospun fiber membrane for solid-state sodium ion batteries. Chemical Engineering Journal, 2021, 426, 131901.	6.6	16
176	A deformable dual-layer interphase for high-performance Li10GeP2S12-based solid-state Li metal batteries. Chemical Engineering Journal, 2022, 431, 134019.	6.6	16
177	Effects of stannous ions on the electrochemical performance of the alkaline zinc electrode. Journal of Applied Electrochemistry, 2007, 37, 249-253.	1.5	15
178	Super Antiwetting Surfaces for Mitigating Drag-Out of Deep Eutectic Solvents. ACS Applied Materials & Interfaces, 2018, 10, 24209-24216.	4.0	15
179	Molybdenum-doped tin oxide nanoflake arrays anchored on carbon foam as flexible anodes for sodium-ion batteries. Journal of Colloid and Interface Science, 2020, 560, 169-176.	5.0	15
180	The Effect of Stress Relaxation on the Microstructure and Hardness Evolution of Pure Amorphousâ€Carbon and C/Ti Multilayer Films. Advanced Engineering Materials, 2010, 12, 920-925.	1.6	14

#	Article	IF	CITATIONS
181	Deposition and wettability of silver nanostructures on Si(1 0 0) substrate based on galvanic displacement reactions. Applied Surface Science, 2010, 257, 1779-1785.	3.1	14
182	Electro-Brush Plating from Deep Eutectic Solvent: A Case of Nanocrystalline Ni Coatings with Superior Mechanical Property and Corrosion Resistance. Journal of the Electrochemical Society, 2015, 162, D159-D165.	1.3	14
183	Bi-containing Electrolyte Enables Robust and Li Ion Conductive Solid Electrolyte Interphase for Advanced Lithium Metal Anodes. Frontiers in Chemistry, 2020, 7, 952.	1.8	14
184	Synthesis and electrochemical performance of xLiV ₃ O ₈ A·yLi ₃ V ₂ (PO ₄) ₃ /rGO composite cathode materials for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 14731-14740.	5.2	13
185	Formation and <i>In Vitro</i> Evaluation of a Deep Eutectic Solvent Conversion Film on Biodegradable Magnesium Alloy. ACS Applied Materials & Interfaces, 2020, 12, 33315-33324.	4.0	13
186	Selfâ€Healing Properties of Alkali Metals under "Highâ€Energy Conditions―in Batteries. Advanced Energy Materials, 2021, 11, 2100470.	10.2	13
187	A Novel Ethanol-Mediated Synthesis of Superionic Halide Electrolytes for High-Voltage All-Solid-State Lithium–Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 29844-29855.	4.0	13
188	Effect of deposition pressure on microstructure and tribological behavior of MoS x /MoS x -Mo nanoscale multi-layer films. Tribology Letters, 2007, 25, 87-91.	1.2	11
189	Tensile-relaxation behavior of electrodeposited nanocrystalline Ni. Journal of Applied Physics, 2010, 108, 054319.	1.1	11
190	Self-supporting hierarchical rGO@Ni nanosheet@Co3O4 nanowire array and its application in high-rate batteries. Journal of Power Sources, 2016, 327, 281-288.	4.0	10
191	Smart construction of intimate interface between solid polymer electrolyte and 3D-array electrode for quasi-solid-state lithium ion batteries. Journal of Power Sources, 2019, 434, 226726.	4.0	10
192	High-performance Na3V2(PO4)2F2.5O0.5 cathode: Hybrid reaction mechanism study via ex-situ XRD and sodium storage properties in solid-state batteries. Chemical Engineering Journal, 2021, 423, 130310.	6.6	10
193	Al-Modified CuO/Cu ₂ O for High-Temperature Thermochemical Energy Storage: from Reaction Performance to Modification Mechanism. ACS Applied Materials & Interfaces, 2021, 13, 57274-57284.	4.0	10
194	High Capacity and Superior Rate Performances Coexisting in Carbon-Based Sodium-Ion Battery Anode. Research, 2019, 2019, 6930294.	2.8	9
195	Electrodeposition: Electrocarving during Electrodeposition Growth (Adv. Mater. 51/2018). Advanced Materials, 2018, 30, 1870395.	11.1	8
196	Ti2Nb10O29 anchored on Aspergillus Oryzae spore carbon skeleton for advanced lithium ion storage. Sustainable Materials and Technologies, 2021, 28, e00272.	1.7	7
197	Regulating thermochemical redox temperature via oxygen defect engineering for protection of solar molten salt receivers. IScience, 2021, 24, 103039.	1.9	7
198	Polycaprolactone/ZnO coating on WE43 magnesium alloy combined with a MgO/MgCO3 transition layer for promoting anticorrosion and interfacial adhesion. Progress in Organic Coatings, 2022, 171, 107029.	1.9	7

#	Article	IF	CITATIONS
199	Design and controllable synthesis of core-shell nanostructured Ni-P particles with an ionothermal strategy. Journal of Alloys and Compounds, 2019, 795, 177-186.	2.8	6
200	Optimizing quasi-solid-state sodium storage performance of Na3V2(PO4)2F2.5O0.5 cathode by structural design plus nitrogen doping. Chemical Engineering Journal, 2022, 433, 133557.	6.6	6
201	Electroless plating of Ni–P coatings on carbon steel in a stirred bed of glass balls. Journal of Applied Electrochemistry, 2009, 39, 879-885.	1.5	5
202	Influence of sputtering carbon top-layer on lithium storage performance of amorphous Ni–P films from ionic liquid. Electrochimica Acta, 2013, 108, 472-479.	2.6	5
203	Frontispiece: Recent Developments of All-Solid-State Lithium Secondary Batteries with Sulfide Inorganic Electrolytes. Chemistry - A European Journal, 2018, 24, .	1.7	0
204	Thermochemical Energy Storage: Selfâ€Assembled Structure Evolution of Mnï£;Fe Oxides for High Temperature Thermochemical Energy Storage (Small 29/2021). Small, 2021, 17, 2170149.	5.2	0