Tianliang Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1574253/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fine particulate matter (PM _{2.5}) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology. Atmospheric Chemistry and Physics, 2019, 19, 11031-11041.	4.9	442
2	Significant changes in the chemical compositions and sources of PM2.5 in Wuhan since the city lockdown as COVID-19. Science of the Total Environment, 2020, 739, 140000.	8.0	173
3	A climatology of aerosol optical depth over China from recent 10 years of <scp>MODIS</scp> remote sensing data. International Journal of Climatology, 2014, 34, 863-870.	3.5	141
4	Control of particulate nitrate air pollution in China. Nature Geoscience, 2021, 14, 389-395.	12.9	139
5	The two-way feedback mechanism between unfavorable meteorological conditions and cumulative aerosol pollution in various haze regions of China. Atmospheric Chemistry and Physics, 2019, 19, 3287-3306.	4.9	97
6	A modelling study of the terrain effects on haze pollution in the Sichuan Basin. Atmospheric Environment, 2019, 196, 77-85.	4.1	97
7	Inverse Relations of PM2.5 and O3 in Air Compound Pollution between Cold and Hot Seasons over an Urban Area of East China. Atmosphere, 2017, 8, 59.	2.3	92
8	Importance of meteorology in air pollution events during the city lockdown for COVID-19 in Hubei Province, Central China. Science of the Total Environment, 2021, 754, 142227.	8.0	82
9	The impacts of pollution control measures on PM2.5 reduction: Insights of chemical composition, source variation and health risk. Atmospheric Environment, 2019, 197, 103-117.	4.1	63
10	The moving of high emission for biomass burning in China: View from multi-year emission estimation and human-driven forces. Environment International, 2020, 142, 105812.	10.0	62
11	Implications of East Asian summer and winter monsoons for interannual aerosol variations over central-eastern China. Atmospheric Environment, 2016, 129, 218-228.	4.1	61
12	Substantial reductions in ambient PAHs pollution and lives saved as a co-benefit of effective long-term PM2.5 pollution controls. Environment International, 2018, 114, 266-279.	10.0	61
13	Intra-regional transport of black carbon between the south edge of the North China Plain and central China during winter haze episodes. Atmospheric Chemistry and Physics, 2019, 19, 4499-4516.	4.9	58
14	An important mechanism of regional O ₃ transport for summer smog over the Yangtze River Delta in eastern China. Atmospheric Chemistry and Physics, 2018, 18, 16239-16251.	4.9	55
15	Heavy air pollution with a unique "non-stagnant―atmospheric boundary layer in the Yangtze River middle basin aggravated by regional transport of PM _{2.5} over China. Atmospheric Chemistry and Physics, 2020, 20, 7217-7230.	4.9	51
16	Long range trans-Pacific transport and deposition of Asian dust aerosols. Journal of Environmental Sciences, 2008, 20, 424-428.	6.1	50
17	Spatial variations and trends in AOD climatology over East Africa during 2002–2016: a comparative study using three satellite data sets. International Journal of Climatology, 2018, 38, e1221.	3.5	50
18	Importance of regional PM2.5 transport and precipitation washout in heavy air pollution in the Twain-Hu Basin over Central China: Observational analysis and WRF-Chem simulation. Science of the Total Environment, 2021, 758, 143710.	8.0	48

#	Article	IF	CITATIONS
19	"Harbor" effect of large topography on haze distribution in eastern China and its climate modulation on decadal variations in haze. Chinese Science Bulletin, 2015, 60, 1132-1143.	0.7	44
20	Statistical intercomparison and validation of multisensory aerosol optical depth retrievals over three AERONET sites in Kenya, East Africa. Atmospheric Research, 2017, 197, 277-288.	4.1	41
21	Updated emission inventories of power plants in simulating air quality during haze periods over East China. Atmospheric Chemistry and Physics, 2018, 18, 2065-2079.	4.9	41
22	The climatology of aerosol optical thickness and radiative effects in Southeast Asia from 18-years of ground-based observations. Environmental Pollution, 2019, 254, 113025.	7.5	40
23	Collective impacts of biomass burning and synoptic weather on surface PM2.5 and CO in Northeast China. Atmospheric Environment, 2019, 213, 64-80.	4.1	39
24	Vertical Structures of Dust Aerosols over East Asia Based on CALIPSO Retrievals. Remote Sensing, 2019, 11, 701.	4.0	39
25	A 10‥ear Record of Aerosol Optical Properties and Radiative Forcing Over Three Environmentally Distinct AERONET Sites in Kenya, East Africa. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1596-1617.	3.3	37
26	Modeling study on three-dimensional distribution of dust aerosols during a dust storm over the Tarim Basin, Northwest China. Atmospheric Research, 2019, 218, 285-295.	4.1	36
27	Spatiotemporal variation of aerosol and potential long-range transport impact over the Tibetan Plateau, China. Atmospheric Chemistry and Physics, 2019, 19, 14637-14656.	4.9	36
28	Characterizing regional aerosol pollution in central China based on 19 years of MODIS data: Spatiotemporal variation and aerosol type discrimination. Environmental Pollution, 2020, 263, 114556.	7.5	34
29	A 20-year simulated climatology of global dust aerosol deposition. Science of the Total Environment, 2016, 557-558, 861-868.	8.0	29
30	Improving Lightning and Precipitation Prediction of Severe Convection Using Lightning Data Assimilation With NCAR WRFâ€RTFDDA. Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,296.	3.3	29
31	A 5.5-year observations of black carbon aerosol at a megacity in Central China: Levels, sources, and variation trends. Atmospheric Environment, 2020, 232, 117581.	4.1	29
32	Characterization of the aerosol chemical composition during the COVID-19 lockdown period in Suzhou in the Yangtze River Delta, China. Journal of Environmental Sciences, 2021, 102, 110-122.	6.1	28
33	Radiative feedbacks of dust in snow over eastern Asia in CAM4-BAM. Atmospheric Chemistry and Physics, 2018, 18, 12683-12698.	4.9	27
34	Co-benefits of reducing PM2.5 and improving visibility by COVID-19 lockdown in Wuhan. Npj Climate and Atmospheric Science, 2021, 4, .	6.8	27
35	Extreme precipitation events in East China and associated moisture transport pathways. Science China Earth Sciences, 2016, 59, 1854-1872.	5.2	26
36	Development of WRF/CUACE v1.0 model and its preliminary application in simulating air quality in China. Geoscientific Model Development, 2021, 14, 703-718.	3.6	26

#	Article	IF	CITATIONS
37	Atmospheric transport drives regional interactions of ozone pollution in China. Science of the Total Environment, 2022, 830, 154634.	8.0	26
38	Quantifying the Influences of PM2.5 and Relative Humidity on Change of Atmospheric Visibility over Recent Winters in an Urban Area of East China. Atmosphere, 2020, 11, 461.	2.3	22
39	Meteorological mechanism of regional PM2.5 transport building a receptor region for heavy air pollution over Central China. Science of the Total Environment, 2022, 808, 151951.	8.0	22
40	Meteorology impact on PM _{2.5} change over a receptor region in the regional transport of air pollutants: observational study of recent emission reductions in central China. Atmospheric Chemistry and Physics, 2022, 22, 3579-3593.	4.9	22
41	Diurnal variation of surface ozone in mountainous areas: Case study of Mt. Huang, East China. Science of the Total Environment, 2015, 538, 583-590.	8.0	21
42	Continuous Assimilation of Lightning Data Using Time‣agged Ensembles for a Convectionâ€Allowing Numerical Weather Prediction Model. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9652-9673.	3.3	21
43	Contribution of Regional PM2.5 Transport to Air Pollution Enhanced by Sub-Basin Topography: A Modeling Case over Central China. Atmosphere, 2020, 11, 1258.	2.3	20
44	Interdecadal Changes in Aerosol Optical Depth over Pakistan Based on the MERRA-2 Reanalysis Data during 1980–2018. Remote Sensing, 2021, 13, 822.	4.0	20
45	Elevated 3D structures of PM _{2.5} and impact of complex terrain-forcing circulations on heavy haze pollution over Sichuan Basin, China. Atmospheric Chemistry and Physics, 2021, 21, 9253-9268.	4.9	20
46	Regional transport patterns for heavy PM2.5 pollution driven by strong cold airflows in Twain-Hu Basin, Central China. Atmospheric Environment, 2022, 269, 118847.	4.1	20
47	Case study of longwave contribution to dust radiative effects over East Asia. Science Bulletin, 2013, 58, 3673-3681.	1.7	19
48	An Observational Study of Entrainment Rate in Deep Convection. Atmosphere, 2015, 6, 1362-1376.	2.3	19
49	Climate modulation of Niño3.4 SST-anomalies on air quality change in southern China: Application to seasonal forecast of haze pollution. Atmospheric Research, 2019, 225, 157-164.	4.1	19
50	Improved method of visibility parameterization focusing on high humidity and aerosol concentrations during fog–haze events: Application in the GRAPES_CAUCE model in Jing-Jin-Ji, China. Atmospheric Environment, 2020, 222, 117139.	4.1	19
51	The contribution of dust devils and dusty plumes to the aerosol budget in western China. Atmospheric Environment, 2016, 126, 21-27.	4.1	18
52	Impact of deep basin terrain on PM2.5 distribution and its seasonality over the Sichuan Basin, Southwest China. Environmental Pollution, 2022, 300, 118944.	7.5	17
53	The contribution of different aerosol types to direct radiative forcing over distinct environments of Pakistan inferred from the AERONET data. Environmental Research Letters, 2020, 15, 114062.	5.2	16
54	Simulated regional transport structures and budgets of dust aerosols during a typical springtime dust storm in the Tarim Basin, Northwest China. Atmospheric Research, 2020, 238, 104892.	4.1	16

#	Article	IF	CITATIONS
55	Effects of the Tibetan Plateau and its second staircase terrain on rainstorms over North China: From the perspective of water vapour transport. International Journal of Climatology, 2019, 39, 3121-3133.	3.5	15
56	Impacts of PBL schemes on PM2.5 simulation and their responses to aerosol-radiation feedback in GRAPES_CUACE model during severe haze episodes in Jing-Jin-Ji, China. Atmospheric Research, 2021, 248, 105268.	4.1	14
57	Multisensor and Multimodel Monitoring and Investigation of a Wintertime Air Pollution Event Ahead of a Cold Front Over Eastern China. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033538.	3.3	14
58	Structures of convection and turbulent kinetic energy in boundary layer over the southeastern edge of the Tibetan Plateau. Science China Earth Sciences, 2015, 58, 1198-1209.	5.2	13
59	Changes in the Distribution Pattern of PM2.5 Pollution over Central China. Remote Sensing, 2021, 13, 4855.	4.0	13
60	Observational study of formation mechanism, vertical structure, and dust emission of dust devils over the Taklimakan Desert, China. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3608-3618.	3.3	12
61	Optical and radiative properties of aerosols during a severe haze episode over the North China Plain in December 2016. Journal of Meteorological Research, 2017, 31, 1045-1061.	2.4	12
62	Quantifying oceanic moisture exports to mainland China in association with summer precipitation. Climate Dynamics, 2018, 51, 4271-4286.	3.8	12
63	Benefits of refined NH3 emission controls on PM2.5 mitigation in Central China. Science of the Total Environment, 2022, 814, 151957.	8.0	12
64	Distinct impacts of vapor transport from the tropical oceans on the regional glacier retreat over the Qinghai-Tibet Plateau. Science of the Total Environment, 2022, 823, 153545.	8.0	12
65	Variation of the aerosol optical properties and validation of MODIS AOD products over the eastern edge of the Tibetan Plateau based on ground-based remote sensing in 2017. Atmospheric Environment, 2020, 223, 117257.	4.1	11
66	Exploring the ozone pollution over the western Sichuan Basin, Southwest China: The impact of diurnal change in mountain-plains solenoid. Science of the Total Environment, 2022, 839, 156264.	8.0	11
67	Variations in FINN Emissions of Particulate Matters and Associated Carbonaceous Aerosols from Remote Sensing of Open Biomass Burning over Northeast China during 2002–2016. Sustainability, 2018, 10, 3353.	3.2	9
68	Evaluating the performance of two surface layer schemes for the momentum and heat exchange processes during severe haze pollution in Jing-Jin-Ji in eastern China. Atmospheric Chemistry and Physics, 2018, 18, 17421-17435.	4.9	9
69	Variations of Haze Pollution in China Modulated by Thermal Forcing of the Western Pacific Warm Pool. Atmosphere, 2018, 9, 314.	2.3	9
70	Northeastward propagation of nocturnal precipitation over the Sichuan Basin. International Journal of Climatology, 2021, 41, E2863.	3.5	9
71	Evaluations of Surface PM10 Concentration and Chemical Compositions in MERRA-2 Aerosol Reanalysis over Central and Eastern China. Remote Sensing, 2021, 13, 1317.	4.0	9
72	Nocturnal surface radiation cooling modulated by cloud cover change reinforces PM2.5 accumulation: Observational study of heavy air pollution in the Sichuan Basin, Southwest China. Science of the Total Environment, 2021, 794, 148624.	8.0	9

#	Article	IF	CITATIONS
73	Dust Radiative Effect Characteristics during a Typical Springtime Dust Storm with Persistent Floating Dust in the Tarim Basin, Northwest China. Remote Sensing, 2022, 14, 1167.	4.0	9
74	Threshold Velocity for Saltation Activity in the Taklimakan Desert. Pure and Applied Geophysics, 2017, 174, 4459-4470.	1.9	8
75	Simulation of the responses of rainstorm in the Yangtze River Middle Reaches to changes in anthropogenic aerosol emissions. Atmospheric Environment, 2020, 220, 117081.	4.1	8
76	Regulation of Synoptic Circulation in Regional PM _{2.5} Transport for Heavy Air Pollution: Study of 5â€year Observation Over Central China. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	8
77	The relationships between surface-column aerosol concentrations and meteorological factors observed at major cities in the Yangtze River Delta, China. Environmental Science and Pollution Research, 2019, 26, 36568-36588.	5.3	7
78	Long-term variations in aerosol optical properties, types, and radiative forcing in the Sichuan Basin, Southwest China. Science of the Total Environment, 2021, 807, 151490.	8.0	7
79	Roles of Atmospheric Turbulence and Stratification in a Regional Pollution Transport Event in the Middle Reaches of the Yangtze River. Earth and Space Science, 2022, 9, .	2.6	7
80	The Cross-Border Transport of PM2.5 from the Southeast Asian Biomass Burning Emissions and Its Impact on Air Pollution in Yunnan Plateau, Southwest China. Remote Sensing, 2022, 14, 1886.	4.0	7
81	Effect of Vertical Wind Shear on PM2.5 Changes over a Receptor Region in Central China. Remote Sensing, 2022, 14, 3333.	4.0	7
82	A method to dynamically constrain black carbon aerosol sources with online monitored potassium. Npj Climate and Atmospheric Science, 2021, 4, .	6.8	6
83	Contribution of Fire Emissions to PM _{2.5} and Its Transport Mechanism Over the Yungui Plateau, China During 2015–2019. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	6
84	Impact of Inter-Regional Transport in a Low-Emission Scenario on PM2.5 in Hubei Province, Central China. Atmosphere, 2021, 12, 250.	2.3	5
85	Aggravation effect of regional transport on wintertime PM2.5 over the middle reaches of the Yangtze River under China's air pollutant emission reduction process. Atmospheric Pollution Research, 2021, 12, 101111.	3.8	5
86	Anomalous surface O3 changes in North China Plain during the northwestward movement of a landing typhoon. Science of the Total Environment, 2022, 820, 153196.	8.0	5
87	In situ observation of warm atmospheric layer and the heat contribution of suspended dust over the Tarim Basin. Atmospheric Chemistry and Physics, 2022, 22, 5195-5207.	4.9	5
88	Revealed variations of air quality in industrial development over a remote plateau of Southwest China: an application of atmospheric visibility data. Meteorology and Atmospheric Physics, 2017, 129, 659-667.	2.0	4
89	Simulation and Analyses of the Potential Impacts of Different Particle-Size Dust Aerosols Caused by the Qinghai-Tibet Plateau Desertification on East Asia. Sustainability, 2020, 12, 3231.	3.2	4
90	Assessment of variations of air pollutant concentrations during the COVID-19 lockdown and impact on urban air quality in South Asia. Urban Climate, 2021, 38, 100908.	5.7	4

#	Article	IF	CITATIONS
91	Modeling Dust Direct Radiative Feedbacks in East Asia During the Last Glacial Maximum. Atmosphere, 2019, 10, 146.	2.3	3
92	A teleconnection between sea surface temperature in the central and eastern Pacific and wintertime haze variations in southern China. Theoretical and Applied Climatology, 2021, 143, 349-359.	2.8	3
93	Impacts of Nocturnal Cloud Top Radiative Cooling on Surface O ₃ in Sichuan Basin, Southwestern China. Earth and Space Science, 2021, 8, e2020EA001541.	2.6	3
94	Modulation of springtime surface sensible heating over the Tibetan Plateau on the interannual variability of East Asian dust cycle. Atmospheric Chemistry and Physics, 2020, 20, 11143-11159.	4.9	3
95	Size Distributions of Water-Soluble Inorganic Ions in Atmospheric Aerosols During the Meiyu Period in the Yangtze River Delta, China. Frontiers in Environmental Science, 2021, 9, .	3.3	2