
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1573745/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cerebrospinal fluid inflammatory profile of cognitive impairment in newly diagnosed multiple sclerosis patients. Multiple Sclerosis Journal, 2022, 28, 768-777.	1.4	12
2	Volume changes of thalamus, hippocampus and cerebellum are associated with specific CSF profile in MS. Multiple Sclerosis Journal, 2022, 28, 550-560.	1.4	7
3	The association between neurodegeneration and local complement activation in the thalamus to progressive multiple sclerosis outcome. Brain Pathology, 2022, 32, e13054.	2.1	13
4	Lymphotoxin-alpha expression in the meninges causes lymphoid tissue formation and neurodegeneration. Brain, 2022, 145, 4287-4307.	3.7	12
5	Overexpression of the ubiquitinâ€editing enzyme A20 in the brain lesions of Multiple Sclerosis patients: moving from systemic to central nervous system inflammation. Brain Pathology, 2021, 31, 283-296.	2.1	9
6	CSF parvalbumin levels reflect interneuron loss linked with cortical pathology in multiple sclerosis. Annals of Clinical and Translational Neurology, 2021, 8, 534-547.	1.7	19
7	Surface-in pathology in multiple sclerosis: a new view on pathogenesis?. Brain, 2021, 144, 1646-1654.	3.7	31
8	The Prognostic Value of White-Matter Selective Double Inversion Recovery MRI Sequence in Multiple Sclerosis: An Exploratory Study. Diagnostics, 2021, 11, 686.	1.3	1
9	Repeated Passive Mobilization to Stimulate Vascular Function in Individuals of Advanced Age Who Are Chronically Bedridden: A Randomized Controlled Trial. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, , .	1.7	5
10	B cells in multiple sclerosis — from targeted depletion to immune reconstitution therapies. Nature Reviews Neurology, 2021, 17, 399-414.	4.9	110
11	Changes in Cerebrospinal Fluid Balance of TNF and TNF Receptors in NaÃ ⁻ ve Multiple Sclerosis Patients: Early Involvement in Compartmentalised Intrathecal Inflammation. Cells, 2021, 10, 1712.	1.8	13
12	Editorial: B Cells in Inflammatory and Neurodegenerative Diseases of the Central Nervous System. Frontiers in Neurology, 2021, 12, 759712.	1.1	0
13	CSF Levels of CXCL12 and Osteopontin as Early Markers of Primary Progressive Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	3.1	18
14	Cerebrospinal Fluid IgM Levels in Association With Inflammatory Pathways in Multiple Sclerosis Patients. Frontiers in Cellular Neuroscience, 2020, 14, 569827.	1.8	5
15	The BAFF / APRIL system as therapeutic target in multiple sclerosis. Expert Opinion on Therapeutic Targets, 2020, 24, 1135-1145.	1.5	17
16	Intrathecal Inflammation in Progressive Multiple Sclerosis. International Journal of Molecular Sciences, 2020, 21, 8217.	1.8	36
17	The <scp>CSF</scp> Profile Linked to Cortical Damage Predicts Multiple Sclerosis Activity. Annals of Neurology, 2020, 88, 562-573.	2.8	46
18	Interleukin-9 regulates macrophage activation in the progressive multiple sclerosis brain. Journal of Neuroinflammation, 2020, 17, 149.	3.1	41

#	Article	IF	CITATIONS
19	Aging, Cellular Senescence, and Progressive Multiple Sclerosis. Frontiers in Cellular Neuroscience, 2020, 14, 178.	1.8	39
20	Can CSF biomarkers predict future MS disease activity and severity?. Multiple Sclerosis Journal, 2020, 26, 582-590.	1.4	28
21	B cell rich meningeal inflammation associates with increased spinal cord pathology in multiple sclerosis. Brain Pathology, 2020, 30, 779-793.	2.1	76
22	The Vascular Side of Chronic Bed Rest: When a Therapeutic Approach Becomes Deleterious. Journal of Clinical Medicine, 2020, 9, 918.	1.0	13
23	B cell rich meningeal inflammation associates with increased spinal cord pathology in multiple sclerosis. Brain Pathology, 2020, 30, 779-793.	2.1	8
24	Increased NK Cell Count in Multiple Sclerosis Patients Treated With Dimethyl Fumarate: A 2-Year Longitudinal Study. Frontiers in Immunology, 2019, 10, 1666.	2.2	18
25	Iron homeostasis, complement, and coagulation cascade as CSF signature of cortical lesions in early multiple sclerosis. Annals of Clinical and Translational Neurology, 2019, 6, 2150-2163.	1.7	51
26	Increase of CSF inflammatory profile in a case of highly active multiple sclerosis. BMC Neurology, 2019, 19, 231.	0.8	11
27	A surfaceâ€in gradient of thalamic damage evolves in pediatric multiple sclerosis. Annals of Neurology, 2019, 85, 340-351.	2.8	42
28	Biopsychosocial model of resilience in young adults with multiple sclerosis (BPS-ARMS): an observational study protocol exploring psychological reactions early after diagnosis. BMJ Open, 2019, 9, e030469.	0.8	10
29	Meningeal inflammation changes the balance of TNF signalling in cortical grey matter in multiple sclerosis. Journal of Neuroinflammation, 2019, 16, 259.	3.1	79
30	Inflammatory intrathecal profiles and cortical damage in multiple sclerosis. Annals of Neurology, 2018, 83, 739-755.	2.8	219
31	Potential neuroprotective effect of Fingolimod in multiple sclerosis and its association with clinical variables. Expert Opinion on Pharmacotherapy, 2018, 19, 387-395.	0.9	22
32	TNF-alpha and metalloproteases as key players in melanoma cells aggressiveness. Journal of Experimental and Clinical Cancer Research, 2018, 37, 326.	3.5	73
33	Meningeal inflammation and cortical demyelination in acute multiple sclerosis. Annals of Neurology, 2018, 84, 829-842.	2.8	96
34	The cortical damage, early relapses, and onset of the progressive phase in multiple sclerosis. Neurology, 2018, 90, e2107-e2118.	1.5	82
35	Neonatal corticosterone mitigates autoimmune neuropsychiatric disorders associated with streptococcus in mice. Scientific Reports, 2018, 8, 10188.	1.6	13
36	Serum and cerebrospinal neurofilament light chain levels in patients with acquired peripheral neuropathies. Journal of the Peripheral Nervous System, 2018, 23, 174-177.	1.4	96

#	Article	IF	CITATIONS
37	MRI of cortical lesions and its use in studying their role in MS pathogenesis and disease course. Brain Pathology, 2018, 28, 735-742.	2.1	33
38	Increased cortical lesion load and intrathecal inflammation is associated with oligoclonal bands in multiple sclerosis patients: a combined CSF and MRI study. Journal of Neuroinflammation, 2017, 14, 40.	3.1	82
39	Heterogeneity of Cortical Lesion Susceptibility Mapping in Multiple Sclerosis. American Journal of Neuroradiology, 2017, 38, 1087-1095.	1.2	16
40	Programmed death 1 is highly expressed on <scp>CD</scp> 8 ⁺ <scp>CD</scp> 57 ⁺ T cells in patients with stable multiple sclerosis and inhibits their cytotoxic response to Epstein–Barr virus. Immunology, 2017, 152, 660-676.	2.0	37
41	Cognitive impairment predicts disability progression and cortical thinning in MS: An 8-year study. Multiple Sclerosis Journal, 2017, 23, 848-854.	1.4	88
42	Dimethyl fumarate: a possible exit strategy from natalizumab treatment in patients with multiple sclerosis at risk for severe adverse events. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 1073-1078.	0.9	14
43	Temporal lobe cortical pathology and inhibitory GABA interneuron cell loss are associated with seizures in multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 25-35.	1.4	32
44	Mice repeatedly exposed to Group-A β-Haemolytic Streptococcus show perseverative behaviors, impaired sensorimotor gating and immune activation in rostral diencephalon. Scientific Reports, 2015, 5, 13257.	1.6	25
45	Exploring the origins of grey matter damage in multiple sclerosis. Nature Reviews Neuroscience, 2015, 16, 147-158.	4.9	317
46	Regional Distribution and Evolution of Gray Matter Damage in Different Populations of Multiple Sclerosis Patients. PLoS ONE, 2015, 10, e0135428.	1.1	49
47	In the search for molecular hallmarks of neuroinflammation in brain diseases. Journal of Neuroimmunology, 2014, 275, 147.	1.1	0
48	Cortical grey matter demyelination can be induced by elevated pro-inflammatory cytokines in the subarachnoid space of MOG-immunized rats. Brain, 2013, 136, 3596-3608.	3.7	125
49	B-Cell Enrichment and Epstein-Barr Virus Infection in Inflammatory Cortical Lesions in Secondary Progressive Multiple Sclerosis. Journal of Neuropathology and Experimental Neurology, 2013, 72, 29-41.	0.9	98
50	Selection of novel reference genes for use in the human central nervous system: a BrainNet Europe Study. Acta Neuropathologica, 2012, 124, 893-903.	3.9	110
51	Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain, 2012, 135, 2925-2937.	3.7	310
52	Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain, 2011, 134, 2755-2771.	3.7	685
53	Inhibition of soluble tumour necrosis factor is therapeutic in experimental autoimmune encephalomyelitis and promotes axon preservation and remyelination. Brain, 2011, 134, 2736-2754.	3.7	174
54	Epstein-Barr Virus Latent Infection and BAFF Expression in B Cells in the Multiple Sclerosis Brain: Implications for Viral Persistence and Intrathecal B-Cell Activation. Journal of Neuropathology and Experimental Neurology, 2010, 69, 677-693.	0.9	135

4

#	Article	IF	CITATIONS
55	A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Annals of Neurology, 2010, 68, 477-493.	2.8	588
56	P2Y12 Receptor Protein in Cortical Gray Matter Lesions in Multiple Sclerosis. Cerebral Cortex, 2010, 20, 1263-1273.	1.6	64
57	Detection of Epstein–Barr virus and B-cell follicles in the multiple sclerosis brain: what you find depends on how and where you look. Brain, 2010, 133, e157-e157.	3.7	66
58	Lymphoid chemokines in chronic neuroinflammation. Journal of Neuroimmunology, 2008, 198, 106-112.	1.1	55
59	Expression of TWEAK and Its Receptor Fn14 in the Multiple Sclerosis Brain: Implications for Inflammatory Tissue Injury. Journal of Neuropathology and Experimental Neurology, 2008, 67, 1137-1148.	0.9	46
60	Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. Journal of Experimental Medicine, 2007, 204, 2899-2912.	4.2	630
61	Suppression of established experimental autoimmune encephalomyelitis and formation of meningeal lymphoid follicles by lymphotoxin β receptor-lg fusion protein. Journal of Neuroimmunology, 2006, 179, 76-86.	1.1	68
62	Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain, 2006, 130, 1089-1104.	3.7	1,142
63	Detection of Ectopic Bâ€cell Follicles with Germinal Centers in the Meninges of Patients with Secondary Progressive Multiple Sclerosis. Brain Pathology, 2004, 14, 164-174.	2.1	1,019
64	Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2004, 148, 11-23.	1.1	286