
Evi Kostenis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1573644/publications.pdf Version: 2024-02-01

FUL KOSTENIS

#	Article	IF	CITATIONS
1	Atypical opioid receptors: unconventional biology and therapeutic opportunities. , 2022, 233, 108014.		15
2	GPCR kinase knockout cells reveal the impact of individual GRKs on arrestin binding and GPCR regulation. Nature Communications, 2022, 13, 540.	5.8	54
3	A Chemical Biology Toolbox Targeting the Intracellular Binding Site of CCR9: Fluorescent Ligands, New Drug Leads and PROTACs. Angewandte Chemie - International Edition, 2022, 61, .	7.2	24
4	Community guidelines for GPCR ligand bias: IUPHAR review 32. British Journal of Pharmacology, 2022, 179, 3651-3674.	2.7	84
5	Adipocyte Gq signaling is a regulator of glucose and lipid homeostasis in mice. Nature Communications, 2022, 13, 1652.	5.8	13
6	Selective optogenetic control of Gq signaling using human Neuropsin. Nature Communications, 2022, 13, 1765.	5.8	24
7	Thioesterase-mediated side chain transesterification generates potent Gq signaling inhibitor FR900359. Nature Communications, 2021, 12, 144.	5.8	32
8	Feature-Based Molecular Networking for the Targeted Identification of G _q -Inhibiting FR900359 Derivatives. Journal of Natural Products, 2021, 84, 1941-1953.	1.5	7
9	Local IP ₃ receptor–mediated Ca ²⁺ signals compound to direct blood flow in brain capillaries. Science Advances, 2021, 7, .	4.7	46
10	Class A Orphans in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	3
11	Unraveling binding mechanism and kinetics of macrocyclic Gαq protein inhibitors. Pharmacological Research, 2021, 173, 105880.	3.1	10
12	An experimental strategy to probe Gq contribution to signal transduction in living cells. Journal of Biological Chemistry, 2021, 296, 100472.	1.6	22
13	Gq signaling in $\hat{I}\pm$ cells is critical for maintaining euglycemia. JCl Insight, 2021, 6, .	2.3	11
14	Disentangling bias between Gq, GRK2, and arrestin3 recruitment to the M3 muscarinic acetylcholine receptor. ELife, 2021, 10, .	2.8	10
15	FFA2-, but not FFA3-agonists inhibit GSIS of human pseudoislets: a comparative study with mouse islets and rat INS-1E cells. Scientific Reports, 2020, 10, 16497.	1.6	17
16	Heterotrimeric G Protein Subunit Gαq Is a Master Switch for Gβγ-Mediated Calcium Mobilization by Gi-Coupled GPCRs. Molecular Cell, 2020, 80, 940-954.e6.	4.5	54
17	Ligand-Specific Allosteric Coupling Controls G-Protein-Coupled Receptor Signaling. ACS Pharmacology and Translational Science, 2020, 3, 859-867.	2.5	15
18	Delineation of molecular determinants for FR900359 inhibition of Gq/11 unlocks inhibition of Gαs. Journal of Biological Chemistry, 2020, 295, 13850-13861.	1.6	11

#	Article	IF	CITATIONS
19	Tetrahydroimidazo[1,2â€ <i>a</i>]pyrazine Derivatives: Synthesis and Evaluation as Gα _q â€Protein Ligands. Chemistry - A European Journal, 2020, 26, 12615-12623.	1.7	7
20	The atypical chemokine receptor ACKR3/CXCR7 is a broad-spectrum scavenger for opioid peptides. Nature Communications, 2020, 11, 3033.	5.8	74
21	G _{q/11} -dependent regulation of endosomal cAMP generation by parathyroid hormone class B GPCR. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7455-7460.	3.3	30
22	Heterotrimeric Gq proteins as therapeutic targets?. Journal of Biological Chemistry, 2020, 295, 5206-5215.	1.6	58
23	Exploring Biased Agonism at FPR1 as a Means to Encode Danger Sensing. Cells, 2020, 9, 1054.	1.8	8
24	Impaired endothelium-mediated cerebrovascular reactivity promotes anxiety and respiration disorders in mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1753-1761.	3.3	39
25	Class A Orphans (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2020, 2020, .	0.2	7
26	5-HT2A receptor-dependent phosphorylation of mGlu2 receptor at Serine 843 promotes mGlu2 receptor-operated Gi/o signaling. Molecular Psychiatry, 2019, 24, 1610-1626.	4.1	17
27	Activation of Gq signaling by Pasteurella multocida toxin inhibits the osteoblastogenic-like actions of Activin A in C2C12 myoblasts, a cell model of fibrodysplasia ossificans progressiva. Bone, 2019, 127, 592-601.	1.4	7
28	Chemokine receptor trafficking coordinates neutrophil clustering and dispersal at wounds in zebrafish. Nature Communications, 2019, 10, 5166.	5.8	47
29	BIM-46174 fragments as potential ligands of G proteins. MedChemComm, 2019, 10, 1838-1843.	3.5	5
30	Direct targeting of Gα _q and Gα ₁₁ oncoproteins in cancer cells. Science Signaling, 2019, 12, .	1.6	84
31	Biased signaling of Ca2+-sensing receptors in cardiac myocytes regulates GIRK channel activity. Journal of Molecular and Cellular Cardiology, 2019, 130, 107-121.	0.9	6
32	Rational design of a heterotrimeric G protein α subunit with artificial inhibitor sensitivity. Journal of Biological Chemistry, 2019, 294, 5747-5758.	1.6	32
33	A Platform of Synthetic Lethal Gene Interaction Networks Reveals that the GNAQ Uveal Melanoma Oncogene Controls the Hippo Pathway through FAK. Cancer Cell, 2019, 35, 457-472.e5.	7.7	169
34	Gβγ signaling to the chemotactic effector P-REX1 and mammalian cell migration is directly regulated by Gαq and Cα13 proteins. Journal of Biological Chemistry, 2019, 294, 531-546.	1.6	27
35	Class A Orphans (version 2019.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	8
36	Class A Orphans (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	0

#	Article	IF	CITATIONS
37	Lack of beta-arrestin signaling in the absence of active G proteins. Nature Communications, 2018, 9, 341.	5.8	297
38	Repurposing HAMI3379 to Block GPR17 and Promote Rodent and Human Oligodendrocyte Differentiation. Cell Chemical Biology, 2018, 25, 775-786.e5.	2.5	27
39	Heterologous Expression, Biosynthetic Studies, and Ecological Function of the Selective Gqâ€ S ignaling Inhibitor FR900359. Angewandte Chemie - International Edition, 2018, 57, 836-840.	7.2	57
40	Heterologe Expression, Biosynthese und ökologische Funktion des selektiven Gq‧ignaltransduktionsinhibitors FR900359. Angewandte Chemie, 2018, 130, 844-849.	1.6	5
41	Bruton's tyrosine kinase and RAC1 promote cell survival in MLL-rearranged acute myeloid leukemia. Leukemia, 2018, 32, 846-849.	3.3	6
42	Label-Free Whole Cell Biosensing for High-Throughput Discovery of Activators and Inhibitors Targeting G Protein-Activated Inwardly Rectifying Potassium Channels. ACS Omega, 2018, 3, 14814-14823.	1.6	10
43	FZD ₅ is a Gα _q -coupled receptor that exhibits the functional hallmarks of prototypical GPCRs. Science Signaling, 2018, 11, .	1.6	46
44	RXFP1 Receptor Activation by Relaxin-2 Induces Vascular Relaxation in Mice via a Gαi2-Protein/PI3Kß/Ĵ³/Nitric Oxide-Coupled Pathway. Frontiers in Physiology, 2018, 9, 1234.	1.3	21
45	NOP receptor pharmacological profile – A dynamic mass redistribution study. PLoS ONE, 2018, 13, e0203021.	1.1	15
46	Pro-Angiogenic Effects of Latent Heparanase and Thrombin Receptor-Mediated Pathways—Do They Share a Common Ground in Melanoma Cells?. Thrombosis and Haemostasis, 2018, 118, 1803-1814.	1.8	8
47	Applying Molecular Networking for the Detection of Natural Sources and Analogues of the Selective Gq Protein Inhibitor FR900359. Journal of Natural Products, 2018, 81, 1628-1635.	1.5	27
48	3-(2-Carboxyethyl)indole-2-carboxylic Acid Derivatives: Structural Requirements and Properties of Potent Agonists of the Orphan G Protein-Coupled Receptor GPR17. Journal of Medicinal Chemistry, 2018, 61, 8136-8154.	2.9	19
49	Arrestins as rheostats of GPCR signalling. Nature Reviews Molecular Cell Biology, 2018, 19, 615-616.	16.1	44
50	Deciphering Specificity Determinants for FR900359â€Đerived G _q α Inhibitors Based on Computational and Structure–Activity Studies. ChemMedChem, 2018, 13, 1634-1643.	1.6	29
51	Engineered Context-Sensitive Agonism: Tissue-Selective Drug Signaling through a G Protein-Coupled Receptor. Journal of Pharmacology and Experimental Therapeutics, 2017, 360, 289-299.	1.3	4
52	FZD10-Gα13 signalling axis points to a role of FZD10 in CNS angiogenesis. Cellular Signalling, 2017, 32, 93-103.	1.7	22
53	A New Molecular Mechanism To Engineer Protean Agonism at a G Protein–Coupled Receptor. Molecular Pharmacology, 2017, 91, 348-356.	1.0	13
54	The Orphan Receptor GPR17 Is Unresponsive to Uracil Nucleotides and Cysteinyl Leukotrienes. Molecular Pharmacology, 2017, 91, 518-532.	1.0	23

#	Article	IF	CITATIONS
55	Functional selectivity and dualsteric/bitopic GPCR targeting. Current Opinion in Pharmacology, 2017, 32, 85-90.	1.7	27
56	Temporal Bias: Time-Encoded Dynamic GPCR Signaling. Trends in Pharmacological Sciences, 2017, 38, 1110-1124.	4.0	68
57	Targeted inhibition of G _q signaling induces airway relaxation in mouse models of asthma. Science Translational Medicine, 2017, 9, .	5.8	50
58	The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature, 2017, 549, 282-286.	13.7	400
59	Reactivation of Gαi-coupled formyl peptide receptors is inhibited by Gαq-selective inhibitors when induced by signals generated by the platelet-activating factor receptor. Journal of Leukocyte Biology, 2017, 102, 871-880.	1.5	31
60	Prostaglandin E2 glyceryl ester is an endogenous agonist of the nucleotide receptor P2Y6. Scientific Reports, 2017, 7, 2380.	1.6	29
61	A Novel Allosteric Activator of Free Fatty Acid 2 Receptor Displays Unique Gi-functional Bias. Journal of Biological Chemistry, 2016, 291, 18915-18931.	1.6	66
62	WNT Stimulation Dissociates a Frizzled 4 Inactive-State Complex with G <i>α</i> _{12/13} . Molecular Pharmacology, 2016, 90, 447-459.	1.0	33
63	The Cq signalling pathway inhibits brown and beige adipose tissue. Nature Communications, 2016, 7, 10895.	5.8	90
64	The Adhesion G Protein-Coupled Receptor GPR56/ADGRG1 Is an Inhibitory Receptor on Human NK Cells. Cell Reports, 2016, 15, 1757-1770.	2.9	84
65	Mapping physiological G protein-coupled receptor signaling pathways reveals a role for receptor phosphorylation in airway contraction. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4524-4529.	3.3	46
66	Superagonism at G protein oupled receptors and beyond. British Journal of Pharmacology, 2016, 173, 3018-3027.	2.7	25
67	The Orphan G Protein-coupled Receptor GPR17 Negatively Regulates Oligodendrocyte Differentiation via Gαi/o and Its Downstream Effector Molecules. Journal of Biological Chemistry, 2016, 291, 705-718.	1.6	66
68	A Molecular Mechanism for Sequential Activation of a G Protein-Coupled Receptor. Cell Chemical Biology, 2016, 23, 392-403.	2.5	30
69	<i>N</i> -Benzylbenzamides: A Novel Merged Scaffold for Orally Available Dual Soluble Epoxide Hydrolase/Peroxisome Proliferator-Activated Receptor γ Modulators. Journal of Medicinal Chemistry, 2016, 59, 61-81.	2.9	44
70	The endophyte Candidatus Burkholderia crenata of the TCM plant Ardisia crenata produces the selective Gq-inhibitor FR900359. Planta Medica, 2016, 81, S1-S381.	0.7	0
71	Holistic Methods for the Analysis of cNMP Effects. Handbook of Experimental Pharmacology, 2015, 238, 339-357.	0.9	7
72	The experimental power of FR900359 to study Gq-regulated biological processes. Nature Communications, 2015, 6, 10156.	5.8	282

#	Article	IF	CITATIONS
73	Activity of dietary fatty acids on FFA1 and FFA4 and characterisation of pinolenic acid as a dual FFA1/FFA4 agonist with potential effect against metabolic diseases. British Journal of Nutrition, 2015, 113, 1677-1688.	1.2	93
74	Label-Free Biosensor Assays in GPCR Screening. Methods in Molecular Biology, 2015, 1272, 199-213.	0.4	29
75	Improved synthesis of 4-/6-substituted 2-carboxy-1H-indole-3-propionic acid derivatives and structure–activity relationships as GPR17 agonists. MedChemComm, 2014, 5, 86-92.	3.5	11
76	Dynamic ligand binding dictates partial agonism at a G protein–coupled receptor. Nature Chemical Biology, 2014, 10, 18-20.	3.9	45
77	β-Arrestin 2 Inhibits Proinflammatory Chemokine Production and Attenuates Contact Allergic Inflammation in the Skin. Journal of Investigative Dermatology, 2014, 134, 2131-2137.	0.3	12
78	Pilot the pulse: controlling the multiplicity of receptor dynamics. Trends in Pharmacological Sciences, 2014, 35, 630-638.	4.0	34
79	A Cell-Permeable Inhibitor to Trap Gl $\pm q$ Proteins in the Empty Pocket Conformation. Chemistry and Biology, 2014, 21, 890-902.	6.2	47
80	A GPCR's back door. Nature Chemical Biology, 2014, 10, 609-610.	3.9	0
81	Development of [³ H]2-Carboxy-4,6-dichloro-1 <i>H</i> -indole-3-propionic Acid ([³ H]PSB-12150): A Useful Tool for Studying GPR17. ACS Medicinal Chemistry Letters, 2014, 5, 326-330.	1.3	16
82	New insight into active muscarinic receptors with the novel radioagonist [3H]iperoxo. Biochemical Pharmacology, 2014, 90, 307-319.	2.0	16
83	Decoding Signaling and Function of the Orphan G Protein–Coupled Receptor GPR17 with a Small-Molecule Agonist. Science Signaling, 2013, 6, ra93.	1.6	111
84	A concise synthesis of the potent inflammatory mediator 5-oxo-ETE. MedChemComm, 2012, 3, 195-198.	3.5	12
85	The allosteric vestibule of a seven transmembrane helical receptor controls G-protein coupling. Nature Communications, 2012, 3, 1044.	5.8	117
86	Applying label-free dynamic mass redistribution technology to frame signaling of G protein–coupled receptors noninvasively in living cells. Nature Protocols, 2011, 6, 1748-1760.	5.5	154
87	Deconvolution of complex G protein–coupled receptor signaling in live cells using dynamic mass redistribution measurements. Nature Biotechnology, 2010, 28, 943-949.	9.4	246
88	Structureâ~'Activity Study of Dihydrocinnamic Acids and Discovery of the Potent FFA1 (GPR40) Agonist TUG-469. ACS Medicinal Chemistry Letters, 2010, 1, 345-349.	1.3	56
89	The C-terminal Tail of CRTH2 Is a Key Molecular Determinant That Constrains Gαi and Downstream Signaling Cascade Activation. Journal of Biological Chemistry, 2009, 284, 1324-1336.	1.6	54
90	Key Determinants of Nucleotide-Activated G Protein-Coupled P2Y ₂ Receptor Function Revealed by Chemical and Pharmacological Experiments, Mutagenesis and Homology Modeling. Journal of Medicinal Chemistry, 2009, 52, 2762-2775.	2.9	73

#	Article	IF	CITATIONS
91	Emerging roles of DP and CRTH2 in allergic inflammation. Trends in Molecular Medicine, 2006, 12, 148-158.	3.5	195
92	Heterotrimeric G-proteins: a short history. British Journal of Pharmacology, 2006, 147, S46-S55.	2.7	347
93	Structureâ^'Activity Relationships in a Series of Bisquaternary Bisphthalimidine Derivatives Modulating the Muscarinic M2-Receptor Allosterically. Journal of Medicinal Chemistry, 2000, 43, 2155-2164.	2.9	67
94	Pronounced pharmacologic deficits in M2 muscarinic acetylcholine receptor knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 1692-1697.	3.3	325
95	Heterotrimeric G Protein Subunit GÎ $\pm q$ is a Master Switch for Gβγ-Mediated Calcium Mobilization by Gi-Coupled GPCRs. SSRN Electronic Journal, O, , .	0.4	1
96	Chemischâ€biologischer Werkzeugkasten für die intrazellulÃre Bindungsstelle von CCR9: Fluoreszierende Liganden, neue Leitstrukturen und PROTACs. Angewandte Chemie, 0, , .	1.6	0