List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1573155/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrospun nano-fibre mats with antibacterial properties from quaternised chitosan and poly(vinyl) Tj ETQq1 1	0.784314 1.1	rgBT/Overloc
2	Novel antibacterial fibers of quaternized chitosan and poly(vinyl pyrrolidone) prepared by electrospinning. European Polymer Journal, 2007, 43, 1112-1122.	2.6	245
3	NMR Analysis of Low Molecular Weight Poly(lactic acid)s. Macromolecules, 1996, 29, 3535-3539.	2.2	208
4	Electrospun Nonâ€Woven Nanofibrous Hybrid Mats Based on Chitosan and PLA for Woundâ€Dressing Applications. Macromolecular Bioscience, 2009, 9, 102-111.	2.1	184
5	Fullerene core star-like polymers—1. Preparation from fullerenes and monoazidopolyethers. European Polymer Journal, 1998, 34, 905-915.	2.6	145
6	Preparation, characterization and biological activity of Schiff base compounds derived from 8-hydroxyquinoline-2-carboxaldehyde and Jeffamines ED®. European Polymer Journal, 2002, 38, 989-999.	2.6	128
7	Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications. Materials Science and Engineering C, 2014, 38, 161-169.	3.8	116
8	Electrospun Antibacterial Chitosan-Based Fibers. Macromolecular Bioscience, 2013, 13, 860-872.	2.1	115
9	Drug-loaded electrospun materials in wound-dressing applications and in local cancer treatment. Expert Opinion on Drug Delivery, 2013, 10, 469-483.	2.4	108
10	Electrospinning of poly(vinyl pyrrolidone)–iodine complex and poly(ethylene oxide)/poly(vinyl) Tj ETQq0 0 0 rg European Polymer Journal, 2007, 43, 1609-1623.	gBT /Overl 2.6	ock 10 Tf 50 3 102
11	Superhydrophobic PVDF and PVDF-HFP nanofibrous mats with antibacterial and anti-biofouling properties. Applied Surface Science, 2016, 363, 363-371.	3.1	93
12	Preparation of PLLA/PEG Nanofibers by Electrospinning and Potential Applications. Journal of Bioactive and Compatible Polymers, 2007, 22, 62-76.	0.8	91
13	Electrospun curcumin-loaded cellulose acetate/polyvinylpyrrolidone fibrous materials with complex architecture and antibacterial activity. Materials Science and Engineering C, 2017, 73, 206-214.	3.8	88
14	Electrospun Nanofibrous Mats Containing Quaternized Chitosan and Polylactide with In Vitro Antitumor Activity against HeLa Cells. Biomacromolecules, 2010, 11, 1633-1645.	2.6	84
15	Polylactide Stereocomplex-Based Electrospun Materials Possessing Surface with Antibacterial and Hemostatic Properties. Biomacromolecules, 2010, 11, 151-159.	2.6	80
16	Polylactide (PLA)-Based Electrospun Fibrous Materials Containing Ionic Drugs as Wound Dressing Materials: A Review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 657-671.	1.8	80
17	Antitumor activity of quaternized chitosan-based electrospun implants against Graffi myeloid tumor. International Journal of Pharmaceutics, 2010, 400, 221-233.	2.6	77
18	Perspectives On: Criteria for Complex Evaluation of the Morphology and Alignment of Electrospun Polymer Nanofibers. Journal of Bioactive and Compatible Polymers, 2006, 21, 465-479.	0.8	75

#	Article	IF	CITATIONS
19	Polyelectrolyte Complexes between (Cross-linked)N-Carboxyethylchitosan and (Quaternized) Poly[2-(dimethylamino)ethyl methacrylate]:Â Preparation, Characterization, and Antibacterial Properties. Biomacromolecules, 2007, 8, 976-984.	2.6	75
20	Hydrolytic degradation of poly(oxyethylene)-poly-(?-caprolactone) multiblock copolymers. Journal of Applied Polymer Science, 1998, 68, 989-998.	1.3	71
	Amphiphilic Poly(<scp>d</scp> - or) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 672 Td (<scp>l</scp> -lactide)- <i>b</i>	-poly(<i>N<!--</td--></i>
21	Copolymers: Controlled Synthesis, Characterization, and Stereocomplex Formation. Biomacromolecules. 2009. 10. 1217-1223.	2.6	68
22	Preparation of Polyelectrolyte-Containing Nanofibers by Electrospinning in the Presence of a Non-Ionogenic Water-Soluble Polymer. Journal of Bioactive and Compatible Polymers, 2005, 20, 419-435.	0.8	65
23	Poly(l-lactide) and poly(butylene succinate) immiscible blends: From electrospinning to biologically active materials. Materials Science and Engineering C, 2014, 41, 119-126.	3.8	64
24	Preparation of chitosan-containing nanofibres by electrospinning of chitosan/poly(ethylene oxide) blend solutions. E-Polymers, 2004, 4, .	1.3	63
25	Electrospun Chitosanâ€Coated Fibers of Poly(<scp>L</scp> â€lactide) and Poly(<scp>L</scp> â€lactide)/Poly(ethylene glycol): Preparation and Characterization. Macromolecular Bioscience, 2008, 8, 153-162.	2.1	62
26	Antibacterial PLA/PEG electrospun fibers: Comparative study between grafting and blending PEG. European Polymer Journal, 2016, 75, 223-233.	2.6	60
27	Antibacterial fluoroquinolone antibiotic-containing fibrous materials from poly(l-lactide-co-d,l-lactide) prepared by electrospinning. European Journal of Pharmaceutical Sciences, 2012, 47, 642-651.	1.9	59
28	Electrospinning/electrospraying vs. electrospinning: A comparative study on the design of poly(l-lactide)/zinc oxide non-woven textile. Applied Surface Science, 2014, 311, 842-850.	3.1	59
29	Hybrid nanofibrous yarns based on N-carboxyethylchitosan and silver nanoparticles with antibacterial activity prepared by self-bundling electrospinning. Carbohydrate Research, 2010, 345, 2374-2380.	1.1	55
30	Electrospun poly(L-lactide) membranes containing a single drug or multiple drug system for antimicrobial wound dressings. Macromolecular Research, 2011, 19, 1310-1319.	1.0	54
31	Enhancing the mechanical properties of electrospun polyester mats by heat treatment. EXPRESS Polymer Letters, 2015, 9, 49-65.	1.1	50
32	Fiber-optic glucose biosensor based on glucose oxidase immobilised in a silica gel matrix. Journal of Sol-Gel Science and Technology, 2009, 50, 437-448.	1.1	49
33	FT-IR microscopy characterization of sol–gel layers prior and after glucose oxidase immobilization for biosensing applications. Journal of Sol-Gel Science and Technology, 2011, 57, 204-211.	1.1	49
34	Study of charge storage in the nanofibrous poly(ethylene terephthalate) electrets prepared by electrospinning or by corona discharge method. European Polymer Journal, 2008, 44, 1962-1967.	2.6	47
35	Multifunctional Hybrid Materials From Poly(3â€Hydroxybutyrate), TiO ₂ Nanoparticles, and Chitosan Oligomers by Combining Electrospinning/Electrospraying and Impregnation. Macromolecular Bioscience, 2013, 13, 707-716.	2.1	47
36	From design of bio-based biocomposite electrospun scaffolds to osteogenic differentiation of human mesenchymal stromal cells. Journal of Materials Science: Materials in Medicine, 2014, 25, 1563-1575.	1.7	47

#	Article	IF	CITATIONS
37	Preparation and Properties of Modified Chitosan Films for Drug Release. Journal of Bioactive and Compatible Polymers, 1995, 10, 285-298.	0.8	45
38	Amphiphilic derivatives of fullerenes formed by polymer modification. Journal of the Chemical Society Chemical Communications, 1993, , 1725.	2.0	44
39	Polyelectrolyte complex between chitosan and poly(2-acryloylamido-2-methylpropanesulfonic acid). Polymer Bulletin, 1999, 43, 67-73.	1.7	44
40	Bicomponent aligned nanofibers of N-carboxyethylchitosan and poly(vinyl alcohol). European Polymer Journal, 2007, 43, 2809-2818.	2.6	44
41	Synthesis of polymer-stabilized magnetic nanoparticles and fabrication of nanocomposite fibers thereof using electrospinning. European Polymer Journal, 2008, 44, 615-627.	2.6	43
42	Electrospun Hybrid Nanofibers Based on Chitosan or <i>N</i> arboxyethylchitosan and Silver Nanoparticles. Macromolecular Bioscience, 2009, 9, 884-894.	2.1	43
43	Antibacterial electrospun poly(É›-caprolactone)/ascorbyl palmitate nanofibrous materials. International Journal of Pharmaceutics, 2011, 416, 346-355.	2.6	41
44	Poly(acrylonitrile)chitosan composite membranes for urease immobilization. Journal of Biotechnology, 2007, 129, 674-680.	1.9	39
45	Functionalized electrospun mats from styrene–maleic anhydride copolymers for immobilization of acetylcholinesterase. European Polymer Journal, 2010, 46, 1966-1974.	2.6	39
46	Poly(3-hydroxybutyrate)/caffeic acid electrospun fibrous materials coated with polyelectrolyte complex and their antibacterial activity and in vitro antitumor effect against HeLa cells. Materials Science and Engineering C, 2016, 65, 379-392.	3.8	38
47	Quaternized chitosan/κ-carrageenan/caffeic acid–coated poly(3-hydroxybutyrate) fibrous materials: Preparation, antibacterial and antioxidant activity. International Journal of Pharmaceutics, 2016, 513, 528-537.	2.6	38
48	New Nanostructured Materials Based on Fullerene and Biodegradable Polyesters. Chemistry of Materials, 2006, 18, 4917-4923.	3.2	37
49	Curcumin-loaded poly(l-lactide- <i>co</i> -D,l-lactide) electrospun fibers: Preparation and antioxidant, anticoagulant, and antibacterial properties. Journal of Bioactive and Compatible Polymers, 2014, 29, 607-627.	0.8	37
50	Advanced centrifugal electrospinning setup. Materials Letters, 2014, 136, 150-152.	1.3	35
51	C60-containing nanostructured polymeric materials with potential biomedical applications. Polymer, 2007, 48, 1835-1843.	1.8	34
52	Chitosan/ferulic acid-coated poly(ε-caprolactone) electrospun materials with antioxidant, antibacterial and antitumor properties. International Journal of Biological Macromolecules, 2018, 107, 689-702.	3.6	34
53	Polyelectrolyte Complexes Based on (Quaternized) Poly[(2-dimethylamino)ethyl methacrylate]: Behavior in Contact with Blood. Macromolecular Bioscience, 2007, 7, 940-954.	2.1	33
54	Photocatalytic self-cleaning poly(l -lactide) materials based on a hybrid between nanosized zinc oxide and expanded graphite or fullerene. Materials Science and Engineering C, 2016, 60, 184-194.	3.8	33

#	Article	IF	CITATIONS
55	Polymer fibers with magnetic core decorated with titanium dioxide prospective for photocatalytic water treatment. Journal of Environmental Chemical Engineering, 2018, 6, 2075-2084.	3.3	33
56	Homopolymers of 5-chloro-8-quinolinyl acrylate and 5-chloro-8-quinolinyl methacrylate and their copolymers with acrylic and methacrylic acid. European Polymer Journal, 1996, 32, 569-578.	2.6	32
57	Novel electrospun poly(ε-caprolactone)-based bicomponent nanofibers possessing surface enriched in tertiary amino groups. European Polymer Journal, 2008, 44, 566-578.	2.6	32
58	Electrospun microfibrous poly(styrene-alt-maleic anhydride)/poly(styrene-co-maleic anhydride) mats tailored for enzymatic remediation of waters polluted by endocrine disruptors. European Polymer Journal, 2009, 45, 2494-2504.	2.6	32
59	Electrospun Mats from Styrene/Maleic Anhydride Copolymers: Modification with Amines and Assessment of Antimicrobial Activity. Macromolecular Bioscience, 2010, 10, 944-954.	2.1	32
60	Comprehensive study on the formation of polyelectrolyte complexes from (quaternized) poly[2-(dimethylamino)ethyl methacrylate] and poly(2-acrylamido-2-methylpropane sodium sulfonate). Journal of Polymer Science Part A, 2006, 44, 5468-5479.	2.5	31
61	Novel Electrospun Nanofibers Composed of Polyelectrolyte Complexes. Macromolecular Rapid Communications, 2008, 29, 677-681.	2.0	31
62	5-Chloro-8-quinolinyl acrylate and n-vinyl-2-pyrrolidone copolymers: Synthesis, characterization and complexes with poly(methacrylic acid). European Polymer Journal, 1996, 32, 325-330.	2.6	30
63	Preparation of Well-Defined Poly[(ethylene oxide)-block-(sodium 2-acrylamido-2-methyl-1-propane) Tj ETQq1 J Macromolecular Rapid Communications, 2006, 27, 1489-1494.	0.784314 r 2.0	gBT /Overlock 30
64	Tuning of the Surface Biological Behavior of Poly(l-lactide)-Based Electrospun Materials by Polyelectrolyte Complex Formation. Biomacromolecules, 2010, 11, 521-532.	2.6	28
65	Antiproliferative activity of nanofibers containing quaternized chitosan and/or doxorubicin against MCF-7 human breast carcinoma cell line by apoptosis. Journal of Bioactive and Compatible Polymers, 2011, 26, 539-551.	0.8	28
66	Poly(3-hydroxybutyrate)-based hybrid materials with photocatalytic and magnetic properties prepared by electrospinning and electrospraying. Journal of Materials Science, 2014, 49, 2144-2153.	1.7	28
67	Preparation and metal ion complexing ability of polyethers with 8-hydroxy-5-quinolinyl end-groups. European Polymer Journal, 1998, 34, 1133-1141.	2.6	26
68	Antibacterial and antimycotic activity of a cross-linked electrospun poly(vinyl pyrrolidone)–iodine complex and a poly(ethylene oxide)/poly(vinyl pyrrolidone)–iodine complex. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 373-386.	1.9	26
69	Electrospun Polyacrylonitrile Nanofibrous Membranes Tailored for Acetylcholinesterase Immobilization. Journal of Bioactive and Compatible Polymers, 2010, 25, 40-57.	0.8	26
70	Modification of electrospun poly(ε-caprolactone) mats by formation of a polyelectrolyte complex between poly(acrylic acid) and quaternized chitosan for tuning of their antibacterial properties. European Polymer Journal, 2014, 50, 18-29.	2.6	26
71	Electrospun polylactideâ€based materials for curcumin release: Photostability, antimicrobial activity, and anticoagulant effect. Journal of Applied Polymer Science, 2016, 133, .	1.3	26
72	Antioxidant and Antitumor Activities of Novel Quercetin-Loaded Electrospun Cellulose Acetate/Polyethylene Glycol Fibrous Materials. Antioxidants, 2020, 9, 232.	2.2	26

#	Article	IF	CITATIONS
73	Nonâ€Woven Fibrous Materials with Antibacterial Properties Prepared by Tailored Attachment of Quaternized Chitosan to Electrospun Mats from Maleic Anhydride Copolymer. Macromolecular Bioscience, 2012, 12, 104-115.	2.1	25
74	Metal ion complex formation of poly(oxyethylene) with 5-chloro-8-quinolinoxyl end-groups. European Polymer Journal, 1995, 31, 741-748.	2.6	24
75	Dual vs. single spinneret electrospinning for the preparation of dual drug containing non-woven fibrous materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 439, 176-183.	2.3	23
76	Antibacterial and antioxidant electrospun materials from poly(3-hydroxybutyrate) and polyvinylpyrrolidone containing caffeic acid phenethyl ester – "in―and "on―strategies for enhanced solubility. International Journal of Pharmaceutics, 2018, 545, 342-356.	2.6	23
77	Polyether-modified fullerenes. Polymer Bulletin, 1994, 33, 175-182.	1.7	22
78	Hydrolysis and Antibacterial Activity of Polymers Containing 8-Quinolinyl Acrylate. Journal of Bioactive and Compatible Polymers, 1997, 12, 294-307.	0.8	22
79	Novel polyelectrolyte complexes between N-carboxyethylchitosan and synthetic polyelectrolytes. European Polymer Journal, 2006, 42, 858-868.	2.6	22
80	Immobilization of acetylcholinesterase on new modified acrylonitrile copolymer membranes. Journal of Molecular Catalysis B: Enzymatic, 2008, 55, 169-176.	1.8	21
81	Quaternized chitosan-coated nanofibrous materials containing gossypol: Preparation by electrospinning, characterization and antiproliferative activity towards HeLa cells. International Journal of Pharmaceutics, 2012, 436, 10-24.	2.6	21
82	Tuning the properties of PVDF or PVDF-HFP fibrous materials decorated with ZnO nanoparticles by applying electrospinning alone or in conjunction with electrospraying. Fibers and Polymers, 2017, 18, 649-657.	1.1	20
83	Poly(ϵ-caprolactone)s with 5-nitro and 5-chloro-8-quinolinoxyl end-groups. European Polymer Journal, 1994, 30, 1179-1185.	2.6	18
84	Separation of C60/C70 mixture on activated carbon and activated carbon fibres. Carbon, 1995, 33, 209-213.	5.4	18
85	Preparation and properties of poly(oxyethylene)s with 5-chloro-8-quinolinoxyl end-groups. European Polymer Journal, 1993, 29, 1407-1417.	2.6	17
86	Electrospun materials from polylactide and Schiff base derivative of Jeffamine ED® and 8-hydroxyquinoline-2-carboxaldehyde and its complex with Cu2+: Preparation, antioxidant and antitumor activities. Materials Science and Engineering C, 2020, 116, 111185.	3.8	17
87	Rheological characteristics of aqueous solutions of mixtures of chitosan and polyoxyethylene. Polymer Bulletin, 1998, 41, 115-121.	1.7	16
88	Optimized waterâ€based ATRP of an anionic monomer: Comprehension and properties characterization. Journal of Polymer Science Part A, 2009, 47, 1108-1119.	2.5	16
89	Еlectrospun Ñellulose acetate membranes decorated with curcumin-PVP particles: preparation, antibacterial and antitumor activities. Journal of Materials Science: Materials in Medicine, 2018, 29, 9.	1.7	16
90	Electrospun 5-chloro-8-hydroxyquinoline-Loaded Cellulose Acetate/Polyethylene Glycol Antifungal Membranes Against Esca. Polymers, 2019, 11, 1617.	2.0	16

#	Article	IF	CITATIONS
91	Modulating the Mechanical Properties of Electrospun PHB/PCL Materials by Using Different Types of Collectors and Heat Sealing. Polymers, 2020, 12, 693.	2.0	16
92	Fullerene core star-like polymers 2. Preparation from fullerenes and linear or cyclic monoaminopolyethers. European Polymer Journal, 1999, 35, 1619-1628.	2.6	15
93	Nanoparticles based on complex of berberine chloride and polymethacrylic or polyacrylic acid with antioxidant and in vitro antitumor activities. International Journal of Pharmaceutics, 2020, 584, 119426.	2.6	15
94	Separation and characterization of ?-caprolactone oligomers by gel permeation chromatography. Polymer Bulletin, 1985, 13, 285.	1.7	14
95	Gel Beads Composed of Chitosan and Polyacids and Their Blood Compatibility. Journal of Bioactive and Compatible Polymers, 2005, 20, 133-151.	0.8	14
96	Hydrolysis of Chitosan, Chitosan-Polyoxyethylene and Chitosan-Poly(2-acryloylamido-2-methylpropanesulfonic acid) by a Crude Enzyme Complex from Trichoderma viride. Journal of Bioactive and Compatible Polymers, 2001, 16, 379-392.	0.8	13
97	Electrospun non-woven mats from stereocomplex between high molar mass poly(l-lactide) and poly(d-lactide)-block-poly(butylene succinate) copoly(ester urethane)s. European Polymer Journal, 2012, 48, 1965-1975.	2.6	13
98	Electrospun Eco-Friendly Materials Based on Poly(3-hydroxybutyrate) (PHB) and TiO2 with Antifungal Activity Prospective for Esca Treatment. Polymers, 2020, 12, 1384.	2.0	13
99	Natural Polyampholyte-Based Coreâ^'Shell Nanoparticles with <i>N</i> -Carboxyethylchitosan-Containing Core and Poly(ethylene oxide) Shell. Biomacromolecules, 2009, 10, 838-844.	2.6	12
100	Novel antibacterial electrospun materials based onÂpolyelectrolyte complexes of a quaternized chitosan derivative. RSC Advances, 2015, 5, 54517-54526.	1.7	12
101	Curcumin-PVP Loaded Electrospun Membranes with Conferred Antibacterial and Antitumoral Activities. Fibers and Polymers, 2020, 21, 55-65.	1.1	12
102	Preparation, properties and complex formation ability of poly(ether-ester)s of poly(ethylene glycol)s and 2,6-pyridinedicarboxylic acid. Macromolecular Chemistry and Physics, 1995, 196, 2695-2708.	1.1	11
103	Chitosan gel beads as drug carriers. Polymer Bulletin, 1999, 43, 101-107.	1.7	11
104	Selfâ€assembly of <i>N</i> arboxyethylchitosan near the isoelectric point. Journal of Polymer Science Part A, 2008, 46, 6712-6721.	2.5	11
105	Polyelectrolyte complex nanoparticles from <i>N</i> â€carboxyethylchitosan and polycationic double hydrophilic diblock copolymers. Journal of Polymer Science Part A, 2009, 47, 2105-2117.	2.5	11
106	New polyelectrolyte complex of chitosan: Preparation, characterization, and application as a biocontrol agent carrier. Journal of Bioactive and Compatible Polymers, 2012, 27, 148-160.	0.8	11
107	Title is missing!. Die Makromolekulare Chemie, 1993, 194, 1065-1078.	1.1	10
108	N,N,N-trimethylchitosan iodide complexes with a weak or a strong polyacid and nanoparticles thereof. Colloid and Polymer Science, 2014, 292, 2899-2912.	1.0	10

#	Article	IF	CITATIONS
109	Materials from Nanosized ZnO and Polyacrylonitrile: Properties Depending on the Design of Fibers (Electrospinning or Electrospinning/Electrospraying). Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 912-922.	1.9	10
110	Electrospun fibers from polylactide-based stereocomplex: why?. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 270-286.	1.8	9
111	Cellulose Acetate-Based Electrospun Materials with a Variety of Biological Potentials: Antibacterial, Antifungal and Anticancer. Polymers, 2021, 13, 1631.	2.0	9
112	Preparation and properties of poly(ethylene glycol) esters of 1-naphthylacetic acid and 2,4-dichlorophenoxyacetic acid. European Polymer Journal, 1992, 28, 1399-1404.	2.6	8
113	Preparation, properties and complexation ability of polyoxyethylene-bis-anaesthesine. European Polymer Journal, 1993, 29, 721-726.	2.6	8
114	High-molecular weight polyoxyethylene as an additive in ophthalmic solutions. International Journal of Pharmaceutics, 1993, 93, 21-26.	2.6	8
115	Copolymers of 2-acryloylamido-2-methylpropanesulfonic acid and acrylic acid with anticoagulant activity. E-Polymers, 2003, 3, .	1.3	8
116	Polymerization of ethylene oxide by the activated monomer mechanism. Polymer International, 1995, 36, 23-28.	1.6	7
117	Chitosan Beads as Carriers of 8-Hydroxy-7-lodoquinoline-5- Sulfonic Acid-Loading, Coating by Interpolymer Complex Formation and Drug Release. Journal of Bioactive and Compatible Polymers, 2001, 16, 3-19.	0.8	7
118	Stable Aqueous Dispersion of PEGylated Nanoparticles by Polyelectrolyte Complex Formation. Macromolecular Rapid Communications, 2007, 28, 1361-1365.	2.0	7
119	Quaternized chitosan-coated nanofibrous implants loaded with gossypol prepared by electrospinning and their efficacy against Graffi myeloid tumor. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 287-306.	1.9	7
120	8-Hydroxyquinoline-5-Sulfonic Acid-Containing Poly(Vinyl Alcohol)/Chitosan Electrospun Materials and Their Cu2+ and Fe3+ Complexes: Preparation, Antibacterial, Antifungal and Antitumor Activities. Polymers, 2021, 13, 2690.	2.0	7
121	Electrospun Poly(methyl methacrylate)/TiO2 Composites for Photocatalytic Water Treatment. Polymers, 2021, 13, 3923.	2.0	7
122	Electrospun 5-Chloro-7-iodo-8-hydroxyquinoline (Clioquinol)-Containing Poly(3-hydroxybutyrate)/Polyvinylpyrrolidone Antifungal Materials Prospective as Active Dressings against Esca. Polymers, 2022, 14, 367.	2.0	7
123	Polymerization of ε-caprolactone initiated by stable salts. Initiation mechanism. European Polymer Journal, 1984, 20, 463-465.	2.6	6
124	Title is missing!. Die Makromolekulare Chemie, 1993, 194, 941-951.	1.1	6
125	Water-soluble polymers bearing biologically active residues, 3. Hydrolysis of polyethers and poly(ether-ester)s bearing 1-naphthylacetyl groups. Macromolecular Chemistry and Physics, 1995, 196, 1663-1669.	1.1	6
126	Partition of Poly(Oxyethylene)s with 5-Chloro-8-Quinolinoxyl End-Groups between 1-Octanol and Water. Journal of Bioactive and Compatible Polymers, 1996, 11, 28-42.	0.8	6

#	Article	IF	CITATIONS
127	Preparation, characterisation and properties of poly(ether-amide)s bearing hydroxyl side groups and of their derivatives with the synthetic auxin 1-naphthylacetic acid. Macromolecular Chemistry and Physics, 1998, 199, 87-96.	1.1	6
128	Synthesis, characterisation and complex forming ability towards ferric ions of oligo(ether–amide)s of Jeffamines ED® and chelidamic acid. European Polymer Journal, 2002, 38, 33-38.	2.6	6
129	Electrospun PLLA/PEG scaffolds. Materials Today, 2019, 28, 114-115.	8.3	6
130	Polyethers with 8-Hydroxy-5-Quinolinyl Chelating End-Groups: Effect on Iron Nutrition of Plants and Antibacterial/Antimycotic Effects. Journal of Bioactive and Compatible Polymers, 2000, 15, 321-333.	0.8	6
131	Eco-Friendly Hybrid PLLA/Chitosan/Trichoderma asperellum Nanomaterials as Biocontrol Dressings against Esca Disease in Grapevines. Polymers, 2022, 14, 2356.	2.0	6
132	Hydride transfer to some initiators of cationic polymerization. Polymer Bulletin, 1981, 4, 653.	1.7	5
133	Title is missing!. Die Makromolekulare Chemie, 1993, 194, 3107-3122.	1.1	5
134	Remedying the iron-deficient maize plants by new synthetic macromolecular chelating agents. Plant and Soil, 2000, 227, 27-34.	1.8	5
135	Effect of coating on the mechanical properties of electrospun poly(3-hydroxybutyrate) materials with targeted fibers alignment. Journal of Polymer Research, 2021, 28, 1.	1.2	5
136	Electrospun Polymer-Fungicide Nanocomposites for Grapevine Protection. Polymers, 2021, 13, 3673.	2.0	5
137	Facile preparation of novel antioxidant fibrous material based on natural plant extract from Portulaca oleracea and PLA by electrospinning for biomedical applications. Polymer International, 0, ,	1.6	5
138	Ultraviolet and 1H-NMR studies on the products of the chemical modification of α,ω-dichloropoly(oxyethylene) with potassium 5-nitro-8-quinolinolate. European Polymer Journal, 1993, 29, 715-720.	2.6	4
139	Chitosan/Polyoxyethylene Diacid Films for Drug Release. Journal of Bioactive and Compatible Polymers, 1997, 12, 221-230.	0.8	4
140	Preparation, Characterization, and Biological Activity of Amides and Esters from 8-Hydroxyquinoline-2-Carboxylic Acid and Jeffamines ED® Or Poly(Ethylene Glycol)S. Journal of Bioactive and Compatible Polymers, 2001, 16, 259-276.	0.8	4
141	Improving the Water-Repellent and Antifungal Properties of Electrospun Cellulose Acetate Materials by Decoration with ZnO Nanoparticles. Fibres and Textiles in Eastern Europe, 2021, 29, 40-45.	0.2	4
142	Coreâ€Sheathâ€Like Poly(Ethylene Oxide)/Beeswax Composite Fibers Prepared by Singleâ€Spinneret Electrospinning. Antibacterial, Antifungal, and Antitumor Activities. Macromolecular Bioscience, 2022, 22, e2200015.	2.1	4
143	Thermal imidization peculiarities of electrospun BPDA-PDA/ODA copolyamic acid nanofibers. Macromolecular Research, 2013, 21, 419-426.	1.0	3
144	Hydride transfer to stable carbenium salts. Polymer Bulletin, 1983, 10, 411-413.	1.7	2

#	Article	IF	CITATIONS
145	New phytoactive polymers prepared by polycondensation. Macromolecular Symposia, 1997, 122, 281-286.	0.4	2
146	Remedying the iron-deficient maize plants grown at lower than the optimal temperature and irradiance by new synthetic macromolecular iron-chelating agents. Journal of Plant Physiology, 2000, 157, 395-403.	1.6	2
147	Novel polyelectrolyte complex between chitosan and poly(2-acryloylamido-2-methylpropanesulfonic) Tj ETQq1 1 ().784314 1.3	rgBT /Overlo
148	Oneâ€5tep Preparation of Electrospun Microfibrous Polystyrene Mats Having Surface Enriched in <i>pâ€ŧert</i> â€Butylcalix[4]arene Fitted with Phosphinoyl Pendant Arms. Macromolecular Rapid Communications, 2008, 29, 1871-1876.	2.0	2
149	Polymerization of Î'-valerolactone and Î2-propiolactone initiated by stable salts. Initiation mechanism. European Polymer Journal, 1985, 21, 409-413.	2.6	1
150	Composite multilayer thin films morphology and their interactions with proteins as a function of polyanion structure. Macromolecular Research, 2011, 19, 1062-1070.	1.0	1