
Abhijeet Gaur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/157298/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complementary operando insights into the activation of multicomponent selective propylene oxidation catalysts. Journal of Catalysis, 2022, 408, 339-355.	6.2	9
2	Continuous synthesis of Cu/ZnO/Al ₂ O ₃ nanoparticles in a co-precipitation reaction using a silicon based microfluidic reactor. Reaction Chemistry and Engineering, 2022, 7, 730-740.	3.7	5
3	Using Transient XAS to Detect Minute Levels of Reversible S-O Exchange at the Active Sites of MoS ₂ -Based Hydrotreating Catalysts: Effect of Metal Loading, Promotion, Temperature, and Oxygenate Reactant. ACS Catalysis, 2022, 12, 633-647.	11.2	12
4	Chemical Imaging of Mixed Metal Oxide Catalysts for Propylene Oxidation: From Model Binary Systems to Complex Multicomponent Systems. ChemCatChem, 2021, 13, 2483-2493.	3.7	10
5	Selective Aerobic Oxidation of 5â€(Hydroxymethyl)furfural over Heterogeneous Silverâ€Gold Nanoparticle Catalysts. Advanced Synthesis and Catalysis, 2020, 362, 5681-5696.	4.3	27
6	Structural dynamics in Ni–Fe catalysts during CO ₂ methanation – role of iron oxide clusters. Catalysis Science and Technology, 2020, 10, 7542-7554.	4.1	48
7	Structural dynamics of an iron molybdate catalyst under redox cycling conditions studied with <i>in situ</i> multi edge XAS and XRD. Physical Chemistry Chemical Physics, 2020, 22, 11713-11723.	2.8	25
8	Cuâ^'Zn Alloy Formation as Unfavored State for Efficient Methanol Catalysts. ChemCatChem, 2020, 12, 4029-4033.	3.7	39
9	Mechanistic insights into the selective oxidation of 5-(hydroxymethyl)furfural over silver-based catalysts. Catalysis Science and Technology, 2020, 10, 5036-5047.	4.1	14
10	<i>Operando</i> XAS/XRD and Raman Spectroscopic Study of Structural Changes of the Iron Molybdate Catalyst during Selective Oxidation of Methanol. ChemCatChem, 2019, 11, 4871-4883.	3.7	26
11	Probing the Active Sites of MoS ₂ Based Hydrotreating Catalysts Using Modulation Excitation Spectroscopy. ACS Catalysis, 2019, 9, 2568-2579.	11.2	43
12	Atomically dispersed Mo atoms on amorphous g-C3N4 promotes visible-light absorption and charge carriers transfer. Applied Catalysis B: Environmental, 2019, 250, 273-279.	20.2	92
13	Activating a Cu/ZnO : Al Catalyst – Much More than Reduction: Decomposition, Selfâ€Đoping and Polymorphism. ChemCatChem, 2019, 11, 1587-1592.	3.7	39
14	Study of distorted octahedral structure in 3d transition metal complexes using XAFS. Chemical Physics Letters, 2018, 692, 382-387.	2.6	6
15	Microfluidic Synthesis of Ultrasmall AuPd Nanoparticles with a Homogeneously Mixed Alloy Structure in Fast Continuous Flow for Catalytic Applications. Journal of Physical Chemistry C, 2018, 122, 1721-1731.	3.1	35
16	Influence of H 2 O and H 2 S on the composition, activity, and stability of sulfided Mo, CoMo, and NiMo supported on MgAl 2 O 4 for hydrodeoxygenation of ethylene glycol. Applied Catalysis A: General, 2018, 551, 106-121.	4.3	31
17	Structural Evolution of Highly Active Multicomponent Catalysts for Selective Propylene Oxidation. Catalysts, 2018, 8, 356.	3.5	14
18	Reactivity of Bismuth Molybdates for Selective Oxidation of Propylene Probed by Correlative Operando Spectroscopies. ACS Catalysis, 2018, 8, 6462-6475.	11.2	28

Abhijeet Gaur

#	Article	IF	CITATIONS
19	Genesis of a Co–Salicylaldimine Complex on Silica Followed in Situ by FTIR and XAS. ChemPhysChem, 2017, 18, 2835-2839.	2.1	1
20	XAFS study of copper(II) complexes with square planar and square pyramidal coordination geometries. Journal of Molecular Structure, 2016, 1118, 212-218.	3.6	34
21	Identification of different coordination geometries by XAFS in copper(II) complexes with trimesic acid. Journal of Molecular Structure, 2016, 1121, 119-127.	3.6	15
22	Performance of BL-8 dispersive and BL-9 scanning EXAFS beamlines at Indus-2 synchrotron. Indian Journal of Physics, 2015, 89, 453-462.	1.8	9
23	X-Ray Absorption Fine Structure Investigation of Copper(II) Mixed Ligand Complexes with Pyridinedicarboxylic Acid as Primary Ligand. Journal of Applied Spectroscopy, 2015, 82, 272-277.	0.7	0
24	XAFS study of aqua (diethylenetriamine)(isonicotinato)-copper(II) complex - inference of square-pyramidal geometry. X-Ray Spectrometry, 2014, 43, 238-245.	1.4	9
25	A comparative study of the spectra recorded at RRCAT synchrotron BL-8 dispersive EXAFS beamline with other beamlines. Pramana - Journal of Physics, 2013, 80, 159-171.	1.8	3
26	Speciation of Mixtures of Copper (I) and Copper (II) Mixed Ligand Complexes by X-Ray Absorption Fine Structure Spectroscopy. Spectroscopy Letters, 2013, 46, 375-383.	1.0	11
27	Extended X-ray absorption fine structure study of mixed-ligand copper(II) complexes having analogous structures. Journal of Applied Physics, 2013, 113, .	2.5	10
28	X-ray absorption fine structure study of multinuclear copper(I) thiourea mixed ligand complexes. Journal of Chemical Physics, 2013, 139, 034303.	3.0	10
29	Coordination geometry around copper in a Schiff-base trinuclear copper complex using EXAFS spectroscopy. Journal of Physics: Conference Series, 2012, 365, 012033.	0.4	1
30	XAFS investigations of copper(II) complexes with tetradentate Schiff base ligands. X-Ray Spectrometry, 2012, 41, 384-392.	1.4	16
31	EXAFS study of binuclear hydroxo-bridged copper(II) complexes. Journal of Coordination Chemistry, 2011, 64, 1265-1275.	2.2	22
32	On the method of calibration of the energy dispersive EXAFS beamline at Indus-2 and fitting theoretical model to the EXAFS spectrum. Sadhana - Academy Proceedings in Engineering Sciences, 2011, 36, 339-348.	1.3	21