
Shimshon Belkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1572974/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbial Biosensors for the Detection of Organic Pollutants. , 2022, , 851-874.		1
2	Sense and sensibility: of synthetic biology and the redesign of bioreporter circuits. Microbial Biotechnology, 2022, 15, 103-106.	2.0	5
3	Machine-learning assisted antibiotic detection and categorization using a bacterial sensor array. Sensors and Actuators B: Chemical, 2022, 355, 131257.	4.0	5
4	Rapid printing of a Bacterial array for a Solid-Phase Assay (BacSPA) of heavy metal ions. Sensors and Actuators B: Chemical, 2022, 359, 131540.	4.0	1
5	Enhancing DNT Detection by a Bacterial Bioreporter: Directed Evolution of the Transcriptional Activator YhaJ. Frontiers in Bioengineering and Biotechnology, 2022, 10, 821835.	2.0	7
6	Introduction of quorum sensing elements into bacterial bioreporter circuits enhances explosives' detection capabilities. Engineering in Life Sciences, 2022, 22, 308-318.	2.0	1
7	Detection of buried explosives with immobilized bacterial bioreporters. Microbial Biotechnology, 2021, 14, 251-261.	2.0	22
8	Coupling high-performance thin-layer chromatography with a battery of cell-based assays reveals bioactive components in wastewater and landfill leachates. Ecotoxicology and Environmental Safety, 2021, 214, 112092.	2.9	12
9	Bacterial bioreporters for the detection of trace explosives: performance enhancement by DNA shuffling and random mutagenesis. Applied Microbiology and Biotechnology, 2021, 105, 4329-4337.	1.7	12
10	An autonomous bioluminescent bacterial biosensor module for outdoor sensor networks, and its application for the detection of buried explosives. Biosensors and Bioelectronics, 2021, 185, 113253.	5.3	13
11	Estrogenicity of chemical mixtures revealed by a panel of bioassays. Science of the Total Environment, 2021, 785, 147284.	3.9	19
12	The Escherichia coli azoR gene promoter: A new sensing element for microbial biodetection of trace explosives. Current Research in Biotechnology, 2021, 3, 21-28.	1.9	12
13	A bacterial bioreporter for the detection of 1,3,5-trinitro-1,3,5-triazinane (RDX). Analytical and Bioanalytical Chemistry, 2021, , 1.	1.9	1
14	Yeast-Based Fluorescent Sensors for the Simultaneous Detection of Estrogenic and Androgenic Compounds, Coupled with High-Performance Thin Layer Chromatography. Biosensors, 2020, 10, 169.	2.3	12
15	Genome-wide gene-deletion screening identifies mutations that significantly enhance explosives vapor detection by a microbial sensor. New Biotechnology, 2020, 59, 65-73.	2.4	15
16	An optical detection module-based biosensor using fortified bacterial beads for soil toxicity assessment. Analytical and Bioanalytical Chemistry, 2020, 412, 3373-3381.	1.9	16
17	Combination of yeast-based inÂvitro screens with high-performance thin-layer chromatography as a novel tool for the detection of hormonal and dioxin-like compounds. Analytica Chimica Acta, 2019, 1081, 218-230.	2.6	22
18	Detection and Quantification of Photosystem II Inhibitors Using the Freshwater Alga <i>Desmodesmus subspicatus</i> in Combination with High-Performance Thin-Layer Chromatography. Environmental Science & Technology, 2019, 53, 13458-13467.	4.6	12

#	Article	IF	CITATIONS
19	A Smartphone-Based Whole-Cell Array Sensor for Detection of Antibiotics in Milk. Sensors, 2019, 19, 3882.	2.1	26
20	The involvement of superoxide radicals in medium pressure UV derived inactivation. Water Research, 2019, 161, 119-125.	5.3	15
21	Microbial Biosensors for the Detection of Organic Pollutants. , 2019, , 1-24.		2
22	Coupling High-Performance Thin-Layer Chromatography with Bacterial Genotoxicity Bioreporters. Environmental Science & Technology, 2019, 53, 6410-6419.	4.6	13
23	Aerobic Transformation of 2,4-Dinitrotoluene by Escherichia coli and Its Implications for the Detection of Trace Explosives. Applied and Environmental Microbiology, 2018, 84, .	1.4	17
24	Microbial biosensing of ciprofloxacin residues in food by a portable lens-free CCD-based analyzer. Analytical and Bioanalytical Chemistry, 2018, 410, 1257-1263.	1.9	20
25	Bacterial inactivation by a carbon nanotube–iron oxide nanocomposite: a mechanistic study usingE. colimutants. Environmental Science: Nano, 2018, 5, 372-380.	2.2	22
26	A Portable Biosensor for 2,4-Dinitrotoluene Vapors. Sensors, 2018, 18, 4247.	2.1	5
27	Convergent patterns in the evolution of mealybug symbioses involving different intrabacterial symbionts. ISME Journal, 2017, 11, 715-726.	4.4	49
28	Remote detection of buried landmines using a bacterial sensor. Nature Biotechnology, 2017, 35, 308-310.	9.4	90
29	Microbial bioreporters of trace explosives. Current Opinion in Biotechnology, 2017, 45, 113-119.	3.3	26
30	Nanoscale Plasmonic V-Groove Waveguides for the Interrogation of Single Fluorescent Bacterial Cells. Nano Letters, 2017, 17, 5481-5488.	4.5	10
31	The Highly Conserved Escherichia coli Transcription Factor YhaJ Regulates Aromatic Compound Degradation. Frontiers in Microbiology, 2016, 7, 1490.	1.5	19
32	Reporter Gene Assays in Ecotoxicology. Advances in Biochemical Engineering/Biotechnology, 2016, 157, 135-157.	0.6	9
33	SOS gene induction and possible mutagenic effects of freeze-drying in Escherichia coli and Salmonella typhimurium. Applied Microbiology and Biotechnology, 2016, 100, 9255-9264.	1.7	6
34	Standoff detection of explosives and buried landmines using fluorescent bacterial sensor cells. Biosensors and Bioelectronics, 2016, 79, 784-788.	5.3	35
35	Advanced Environmental Monitoring and Modeling (AEMM) 2014. Chemosphere, 2016, 143, 1-2.	4.2	Ο
36	Metagenomic Signatures of Bacterial Adaptation to Life in the Phyllosphere of a Salt-Secreting Desert Tree. Applied and Environmental Microbiology, 2016, 82, 2854-2861.	1.4	38

#	Article	IF	CITATIONS
37	Coupling between a Plasmonic V-groove Waveguide and Single Fluorescent Bacterial cells. , 2016, , .		0
38	Remote Bio-Sensing of Buried Antipersonnel Landmines Using Bacterial Biosensors. , 2016, , .		0
39	Genetically engineered microorganisms for the detection of explosives' residues. Frontiers in Microbiology, 2015, 6, 1175.	1.5	20
40	High-throughput prescreening of pharmaceuticals using a genome-wide bacterial bioreporter array. Biosensors and Bioelectronics, 2015, 68, 699-704.	5.3	18
41	Aptamer-based depletion of small molecular contaminants: A case study using ochratoxin A. Biotechnology and Bioprocess Engineering, 2015, 20, 1016-1025.	1.4	27
42	Water pollutant monitoring by a whole cell array through lens-free detection on CCD. Lab on A Chip, 2015, 15, 1472-1480.	3.1	31
43	Detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene by an Escherichia coli bioreporter: performance enhancement by directed evolution. Applied Microbiology and Biotechnology, 2015, 99, 7177-7188.	1.7	45
44	A miniature porous aluminum oxide-based flow-cell for online water quality monitoring using bacterial sensor cells. Biosensors and Bioelectronics, 2015, 64, 625-632.	5.3	44
45	Standoff Detection of Buried Landmines Using Genetically Engineered Fluorescent Bacterial Sensors. , 2015, , .		0
46	Standoff Detection of Explosives and Buried Landmines Using Bacterial Biosensors. , 2014, , .		1
47	Mixtures of Chemical Pollutants at European Legislation Safety Concentrations: How Safe Are They?. Toxicological Sciences, 2014, 141, 218-233.	1.4	108
48	Molecular Manipulations for Enhancing Luminescent Bioreporters Performance in the Detection of Toxic Chemicals. Advances in Biochemical Engineering/Biotechnology, 2014, 145, 137-149.	0.6	6
49	Escherichia coli bioreporters for the detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene. Applied Microbiology and Biotechnology, 2014, 98, 885-895.	1.7	81
50	Improved detection of antibiotic compounds by bacterial reporter strains achieved by manipulations of membrane permeability and efflux capacity. Applied Microbiology and Biotechnology, 2014, 98, 2267-2277.	1.7	10
51	Escherichia coli ribose binding protein based bioreporters revisited. Scientific Reports, 2014, 4, 5626.	1.6	25
52	Simultaneous quantification of the fluorescent responses of an ensemble of bacterial sensors. Biosensors and Bioelectronics, 2013, 49, 394-398.	5.3	10
53	Functional modeling of electrochemical whole-cell biosensors. Sensors and Actuators B: Chemical, 2013, 181, 479-485.	4.0	9
54	Broad spectrum detection and "barcoding―of water pollutants by a genome-wide bacterial sensor array. Water Research, 2013, 47, 3782-3790.	5.3	17

#	Article	IF	CITATIONS
55	Global abundance of microbial rhodopsins. ISME Journal, 2013, 7, 448-451.	4.4	104
56	Diverse Microhabitats Experienced by Halomonas variabilis on Salt-Secreting Leaves. Applied and Environmental Microbiology, 2013, 79, 845-852.	1.4	14
57	Distance-Decay Relationships Partially Determine Diversity Patterns of Phyllosphere Bacteria on Tamarix Trees across the Sonoran Desert. Applied and Environmental Microbiology, 2012, 78, 7818-7818.	1.4	3
58	Distance-Decay Relationships Partially Determine Diversity Patterns of Phyllosphere Bacteria on Tamrix Trees across the Sonoran Desert. Applied and Environmental Microbiology, 2012, 78, 6187-6193.	1.4	92
59	Whole-cell biochips for online water monitoring. Bioengineered, 2012, 3, 124-128.	1.4	4
60	A bacterial bioreporter panel to assay the cytotoxicity of atmospheric particulate matter. Atmospheric Environment, 2012, 63, 94-101.	1.9	24
61	Biogeographical diversity of leaf-associated microbial communities from salt-secreting Tamarix trees of the Dead Sea region. Research in Microbiology, 2012, 163, 142-150.	1.0	22
62	Modified working electrodes for electrochemical whole-cell microchips. Electrochimica Acta, 2012, 82, 109-114.	2.6	10
63	Bacterial bioluminescence as a lure for marine zooplankton and fish. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 853-857.	3.3	50
64	Microbial rhodopsins on leaf surfaces of terrestrial plants. Environmental Microbiology, 2012, 14, 140-146.	1.8	78
65	Microbial sensor cell arrays. Current Opinion in Biotechnology, 2012, 23, 2-8.	3.3	58
66	A bacterial reporter panel for the detection and classification of antibiotic substances. Microbial Biotechnology, 2012, 5, 536-548.	2.0	43
67	Bacterial anoxygenic photosynthesis on plant leaf surfaces. Environmental Microbiology Reports, 2012, 4, 209-216.	1.0	94
68	Whole-cell biochips for bio-sensing: integration of live cells and inanimate surfaces. Critical Reviews in Biotechnology, 2011, 31, 337-353.	5.1	45
69	Online Monitoring of Water Toxicity by Use of Bioluminescent Reporter Bacterial Biochips. Environmental Science & Technology, 2011, 45, 8536-8544.	4.6	67
70	A printed nanolitre-scale bacterial sensor array. Lab on A Chip, 2011, 11, 139-146.	3.1	34
71	Negative regulation of σ70-driven promoters by σ70. Research in Microbiology, 2011, 162, 461-469.	1.0	2
72	Signal amelioration of electrophoretically deposited whole-cell biosensors using external electric fields. Electrochimica Acta, 2011, 56, 9666-9672.	2.6	6

#	Article	IF	CITATIONS
73	Upgrading bioluminescent bacterial bioreporter performance by splitting the lux operon. Analytical and Bioanalytical Chemistry, 2011, 400, 1071-1082.	1.9	48
74	Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources?. Analytical and Bioanalytical Chemistry, 2011, 400, 915-929.	1.9	102
75	Microbial genotoxicity bioreporters based on sulA activation. Analytical and Bioanalytical Chemistry, 2011, 400, 3013-3024.	1.9	30
76	Bacterial biofilm-based water toxicity sensor. Sensors and Actuators B: Chemical, 2011, 158, 366-371.	4.0	10
77	Geographical Location Determines the Population Structure in Phyllosphere Microbial Communities of a Salt-Excreting Desert Tree. Applied and Environmental Microbiology, 2011, 77, 7647-7655.	1.4	182
78	Evaluation of chrono-amperometric signal detection for the analysis of genotoxicity by a whole cell biosensor. Analytica Chimica Acta, 2010, 659, 122-128.	2.6	16
79	Strategies for enhancing bioluminescent bacterial sensor performance by promoter region manipulation. Microbial Biotechnology, 2010, 3, 300-310.	2.0	55
80	Bacterial genotoxicity bioreporters. Microbial Biotechnology, 2010, 3, 412-427.	2.0	51
81	Phosphorus and nitrogen in a monomictic freshwater lake: employing cyanobacterial bioreporters to gain new insights into nutrient bioavailability. Freshwater Biology, 2010, 55, 1182-1190.	1.2	23
82	Comparative community genomics in the Dead Sea: an increasingly extreme environment. ISME Journal, 2010, 4, 399-407.	4.4	101
83	Where microbiology meets microengineering: design and applications of reporter bacteria. Nature Reviews Microbiology, 2010, 8, 511-522.	13.6	466
84	Electronically Directed Integration of Whole-Cell Biosensors on Bio-Chips. ECS Transactions, 2010, 33, 49-58.	0.3	0
85	Strategies for enhancing bioluminescent bacterial sensor performance by promoter region manipulation. Bioengineered Bugs, 2010, 1, 151-153.	2.0	3
86	Life on a Leaf: Bacterial Epiphytes of a Salt-Excreting Desert Tree. Cellular Origin and Life in Extreme Habitats, 2010, , 393-406.	0.3	4
87	Microbial Cell Arrays. , 2009, 117, 85-108.		9
88	Overproduction of Exopolysaccharides by an <i>Escherichia coli</i> K-12 <i>rpoS</i> Mutant in Response to Osmotic Stress. Applied and Environmental Microbiology, 2009, 75, 483-492.	1.4	81
89	Lead Bioavailability in Soil and Soil Components. Water, Air, and Soil Pollution, 2009, 202, 315-323.	1.1	27
90	Optical modeling of bioluminescence in whole cell biosensors. Biosensors and Bioelectronics, 2009, 24, 1969-1973.	5.3	24

#	Article	IF	CITATIONS
91	A whole cell electrochemical biosensor for water genotoxicity bio-detection. Electrochimica Acta, 2009, 54, 6113-6118.	2.6	84
92	A Novel Microfluidic Whole Cell Biosensor Based on Electrochemical Detection for Water Toxicity Analysis. ECS Transactions, 2009, 16, 187-197.	0.3	2
93	Simple quantification of bacterial envelope-associated extracellular materials. Journal of Microbiological Methods, 2009, 78, 302-306.	0.7	4
94	Development of a quantitative optical biochip based on a double integrating sphere system that determines absolute photon number in bioluminescent solution: application to quantum yield scale realization. Applied Optics, 2009, 48, 3216.	2.1	7
95	CdSe quantum dots induce superoxide stress in engineered biosensor bacteria. Nanotoxicology, 2009, 3, 98-108.	1.6	16
96	Genetically Engineered Bacteria for Genotoxicity Assessment. Handbook of Environmental Chemistry, 2009, , 161-186.	0.2	16
97	Assessment of River Health by CombinedMicroscale Toxicity Testing and Chemical Analysis. , 2009, , 241-249.		0
98	Induction of the yjbEFGH operon is regulated by growth rate and oxygen concentration. Archives of Microbiology, 2008, 189, 219-226.	1.0	7
99	Modeling and measurement of a whole-cell bioluminescent biosensor based on a single photon avalanche diode. Biosensors and Bioelectronics, 2008, 24, 882-887.	5.3	46
100	Microbial wholeâ€cell arrays. Microbial Biotechnology, 2008, 1, 137-148.	2.0	43
101	Microbial reporters of metal bioavailability. Microbial Biotechnology, 2008, 1, 320-330.	2.0	108
102	Toxicant Identification by a Luminescent Bacterial Bioreporter Panel: Application of Pattern Classification Algorithms. Environmental Science & Technology, 2008, 42, 8486-8491.	4.6	37
103	Drop-Size Soda Lakes: Transient Microbial Habitats on a Salt-Secreting Desert Tree. Genetics, 2008, 178, 1615-1622.	1.2	46
104	Whole-cell luminescence biosensor-based lab-on-chip integrated system for water toxicity analysis. , 2006, , .		6
105	Advances in preservation methods: keeping biosensor microorganisms alive and active. Current Opinion in Biotechnology, 2006, 17, 43-49.	3.3	138
106	Freeze-drying of sol–gel encapsulated recombinant bioluminescent E. coli by using lyo-protectants. Sensors and Actuators B: Chemical, 2006, 113, 768-773.	4.0	20
107	GENETICALLY ENGINEERED MICROORGANISMS FOR POLLUTION MONITORING. , 2006, , 147-160.		6
108	Survival of Enteric Bacteria in Seawater: Molecular Aspects. , 2005, , 93-107.		5

108 Survival of Enteric Bacteria in Seawater: Molecular Aspects. , 2005, , 93-107.

#	Article	IF	CITATIONS
109	Genotoxicity monitoring using a 2D-spectroscopic GFP whole cell biosensing system. Sensors and Actuators B: Chemical, 2003, 89, 27-32.	4.0	10
110	Fluorescence and bioluminescence reporter functions in genetically modified bacterial sensor strains. Sensors and Actuators B: Chemical, 2003, 90, 2-8.	4.0	92
111	Rice seedling whole exudates and extracted alkylresorcinols induce stress-response in Escherichia coli biosensors. Environmental Microbiology, 2003, 5, 403-411.	1.8	25
112	Microbial whole-cell sensing systems of environmental pollutants. Current Opinion in Microbiology, 2003, 6, 206-212.	2.3	462
113	A Synechococcus P glnA :: luxAB Fusion for Estimation of Nitrogen Bioavailability to Freshwater Cyanobacteria. Applied and Environmental Microbiology, 2003, 69, 1465-1474.	1.4	32
114	Fluorescent Bacteria Encapsulated in Solâ^'Gel Derived Silicate Films. Chemistry of Materials, 2002, 14, 2676-2686.	3.2	55
115	Recombinant microorganisms as environmental biosensors: pollutants detection by Escherichia coli bearing fabA′::lux fusions. Journal of Biotechnology, 2002, 94, 125-132.	1.9	104
116	PHOSPHORUS BIOAVAILABILITY MONITORING BY A BIOLUMINESCENT CYANOBACTERIAL SENSOR STRAIN1. Journal of Phycology, 2002, 38, 107-115.	1.0	54
117	Sol–gel luminescence biosensors: Encapsulation of recombinant E. coli reporters in thick silicate films. Analytica Chimica Acta, 2002, 462, 11-23.	2.6	100
118	Gene expression analysis of the response by Escherichia coli to seawater. Antonie Van Leeuwenhoek, 2002, 81, 15-25.	0.7	23
119	Whole-cell biodetection of halogenated organic acids. Talanta, 2001, 55, 959-964.	2.9	14
120	Antibody-based immobilization of bioluminescent bacterial sensor cells. Talanta, 2001, 55, 1029-1038.	2.9	70
121	Monitoring of phosphorus bioavailability in water by an immobilized luminescent cyanobacterial reporter strain. Biosensors and Bioelectronics, 2001, 16, 811-818.	5.3	51
122	Survival of enteric bacteria in seawater: Table 1. FEMS Microbiology Reviews, 2001, 25, 513-529.	3.9	242
123	Bioluminescent whole cell optical fiber sensor to genotoxicants: system optimization. Sensors and Actuators B: Chemical, 2001, 74, 18-26.	4.0	109
124	Detection of 4-chlorobenzoate using immobilized recombinant Escherichia coli reporter strains. Sensors and Actuators B: Chemical, 2000, 70, 139-144.	4.0	15
125	Microbial Sensors of Ultraviolet Radiation Based on recA'::lux Fusions. Applied Biochemistry and Biotechnology, 2000, 89, 151-160.	1.4	31
126	Improved bacterial SOS promoterâ^·lux fusions for genotoxicity detection. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2000, 466, 97-107.	0.9	108

#	Article	IF	CITATIONS
127	Combinations of chlorocatechols and heavy metals cause DNA degradation in vitro but must not result in increased mutation rates in vivo. , 1999, 33, 202-210.		16
128	Specific detection of p-chlorobenzoic acid by Escherichia coli bearing a plasmid-borne fcbA'::lux fusion. Chemosphere, 1999, 38, 633-641.	4.2	24
129	Reactive Oxygen Species Are Partially Involved in the Bacteriocidal Action of Hypochlorous Acid. Archives of Biochemistry and Biophysics, 1999, 367, 311-316.	1.4	82
130	A Panel of Stress-Responsive Luminous Bacteria for Monitoring Wastewater Toxicity. , 1998, 102, 247-258.		26
131	A panel of stress-responsive luminous bacteria for the detection of selected classes of toxicants. Water Research, 1997, 31, 3009-3016.	5.3	143
132	Biological denitrification of drinking water using newspaper. Water Research, 1996, 30, 965-971.	5.3	157
133	SODIUM DEPRIVATION UNDER ALKALINE CONDITIONS CAUSES RAPID DEATH OF THE FILAMENTOUS CYANOBACTERIUM SPIRULINA PLATENSIS1. Journal of Phycology, 1996, 32, 608-613.	1.0	23
134	Monitoring subtoxic environmental hazards by stress-responsive luminous bacteria. Environmental Toxicology and Water Quality, 1996, 11, 179-185.	0.7	37
135	Toxicity and genotoxicity enhancement during polycyclic aromatic hydrocarbons' biodegradation. Environmental Toxicology and Water Quality, 1994, 9, 303-309.	0.7	58
136	A novel terrestrial halophilic environment: The phylloplane of Atriplex halimus, a salt-excreting plant. FEMS Microbiology Ecology, 1994, 14, 99-109.	1.3	28
137	Utilization of a bioluminescence toxicity assay for optimal design of biological and physicochemical wastewater treatment processes. Environmental Toxicology and Water Quality, 1994, 9, 311-316.	0.7	3
138	Treatment of High-Strength, Complex and Toxic Chemical Wastewater: End-of Pipe "Best Available Technology―vs. an In-Plant Control Program. Water Science and Technology, 1994, 29, 221-233.	1.2	0
139	Evaluation of activated carbon adsorption capacity by a toxicity bioassay. Water Research, 1993, 27, 1577-1583.	5.3	8
140	Biological Treatment of a High Salinity Chemical Industrial Wastewater. Water Science and Technology, 1993, 27, 105-112.	1.2	42
141	Fast Assessment of Toxicants Adsorption on Activated Carbon Using a Luminous Bacteria Bioassay. Water Science and Technology, 1993, 27, 113-120.	1.2	8
142	Effect of inorganic constituents on chemical oxygen demand—I. Bromides are unneutralizable by mercuric sulfate complexation. Water Research, 1992, 26, 1577-1581.	5.3	19
143	Effect of inorganic constituents on chemical oxygen demand—II. Organic carbon to halogen ratios determine halogen interference. Water Research, 1992, 26, 1583-1588.	5.3	19
144	Biodegradation of haloalkanes. Biodegradation, 1992, 3, 299-313.	1.5	40

#	Article	IF	CITATIONS
145	Denitrification in laboratory sand columns: Carbon regime, gas accumulation and hydraulic properties. Water Research, 1991, 25, 325-332.	5.3	43
146	High internal pH conveys ammonia resistance in spirulina platensis. Bioresource Technology, 1991, 38, 167-169.	4.8	44
147	Thermococcus litoralis sp. nov.: A new species of extremely thermophilic marine archaebacteria. Archives of Microbiology, 1990, 153, 205-207.	1.0	222
148	Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga. Archives of Microbiology, 1988, 150, 103-104.	1.0	171
149	[40] Anoxygenic photosynthetic electron transport. Methods in Enzymology, 1988, 167, 380-386.	0.4	12
150	[74] Electron spin resonance oximetry. Methods in Enzymology, 1988, 167, 670-677.	0.4	3
151	[75] Determination of pH gradients in intact cyanobacteria by electron spin resonance spectroscopy. Methods in Enzymology, 1988, 167, 677-685.	0.4	8
152	Proton Gradients in Intact Cyanobacteria. Plant Physiology, 1987, 84, 25-30.	2.3	62
153	Determination of dissolved oxygen in photosynthetic systems by nitroxide spin-probe broadening. Archives of Biochemistry and Biophysics, 1987, 252, 487-495.	1.4	25
154	Reduction and destruction rates of nitroxide spin probes. Archives of Biochemistry and Biophysics, 1987, 256, 232-243.	1.4	139
155	A New Sulfur-Reducing, Extremely Thermophilic Eubacterium from a Submarine Thermal Vent. Applied and Environmental Microbiology, 1986, 51, 1180-1185.	1.4	138
156	A new extremely thermophilic, sulfur-reducing heterotrophic, marine bacterium. Archives of Microbiology, 1985, 141, 181-186.	1.0	70
157	2,3-Dimercaptopropan-1-ol (BAL). An aerobic electron-transport inhibitor, but an anaerobic photosynthetic electron donor. Biochimica Et Biophysica Acta - Bioenergetics, 1984, 766, 563-569.	0.5	7
158	Na-Dithionite Promotes Photosynthetic Sulfide Utilization by the Cyanobacterium <i>Oscillatoria limnetica</i> . Plant Physiology, 1983, 72, 825-828.	2.3	19
159	Hydrogen metabolism in the facultative anoxygenic cyanobacteria (blue-green algae) Oscillatoria limnetica and Aphanothece halophytica. Archives of Microbiology, 1978, 116, 109-111.	1.0	60
160	Sulfide-dependent hydrogen evolution in the cyanobacteriumOscillatoria limnetica. FEBS Letters, 1978, 94, 291-294.	1.3	41
161	The biosynthesis of δ-aminolevulinic acid in greening maize leaves. Phytochemistry, 1975, 14, 2399-2402.	1.4	63