Gerard Derosiere

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1572970/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Similar scaling of contralateral and ipsilateral cortical responses during graded unimanual force generation. NeuroImage, 2014, 85, 471-477.	2.1	84
2	Prefrontal cortex activity during motor tasks with additional mental load requiring attentional demand: A near-infrared spectroscopy study. Neuroscience Research, 2013, 76, 156-162.	1.0	75
3	Adaptations of Motor Neural Structures' Activity to Lapses in Attention. Cerebral Cortex, 2015, 25, 66-74.	1.6	50
4	NIRS-measured prefrontal cortex activity in neuroergonomics: strengths and weaknesses. Frontiers in Human Neuroscience, 2013, 7, 583.	1.0	48
5	Towards a Near Infrared Spectroscopy-Based Estimation of Operator Attentional State. PLoS ONE, 2014, 9, e92045.	1.1	39
6	Advanced TMS approaches to probe corticospinal excitability during action preparation. NeuroImage, 2020, 213, 116746.	2.1	38
7	Towards assessing corticospinal excitability bilaterally: Validation of a double-coil TMS method. Journal of Neuroscience Methods, 2018, 293, 162-168.	1.3	31
8	Visuomotor Correlates of Conflict Expectation in the Context of Motor Decisions. Journal of Neuroscience, 2018, 38, 9486-9504.	1.7	31
9	Using a Double-Coil TMS Protocol to Assess Preparatory Inhibition Bilaterally. Frontiers in Neuroscience, 2018, 12, 139.	1.4	31
10	Primary motor cortex contributes to the implementation of implicit value-based rules during motor decisions. Neurolmage, 2017, 146, 1115-1127.	2.1	29
11	Tuning the Corticospinal System: How Distributed Brain Circuits Shape Human Actions. Neuroscientist, 2020, 26, 359-379.	2.6	28
12	Implicit visual cues tune oscillatory motor activity during decision-making. NeuroImage, 2019, 186, 424-436.	2.1	26
13	Learning stage-dependent effect of M1 disruption on value-based motor decisions. NeuroImage, 2017, 162, 173-185.	2.1	25
14	Utilizing slope method as an alternative data analysis for functional near-infrared spectroscopy-derived cerebral hemodynamic responses. International Journal of Industrial Ergonomics, 2013, 43, 335-341.	1.5	24
15	Motor cortex disruption delays motor processes but not deliberation about action choices. Journal of Neurophysiology, 2019, 122, 1566-1577.	0.9	24
16	Reward boosts reinforcement-based motor learning. IScience, 2021, 24, 102821.	1.9	23
17	Global and Specific Motor Inhibitory Mechanisms during Action Preparation. Journal of Neuroscience, 2015, 35, 16297-16299.	1.7	21
18	Relationship Between Submaximal Handgrip Muscle Force and NIRS-Measured Motor Cortical	0.8	17

⁸ Activation. Advances in Experimental Medicine and Biology, 2012, 737, 269-274.

GERARD DEROSIERE

#	Article	IF	CITATIONS
19	A Dynamical System Framework for Theorizing Preparatory Inhibition. Journal of Neuroscience, 2018, 38, 3391-3393.	1.7	16
20	Cortical motor output decreases after neuromuscular fatigue induced by electrical stimulation of the plantar flexor muscles. Acta Physiologica, 2015, 214, 124-134.	1.8	12
21	Motor training strengthens corticospinal suppression during movement preparation. Journal of Neurophysiology, 2020, 124, 1656-1666.	0.9	12
22	Selecting and Executing Actions for Rewards. Journal of Neuroscience, 2020, 40, 6474-6476.	1.7	11
23	Hasty sensorimotor decisions rely on an overlap of broad and selective changes in motor activity. PLoS Biology, 2022, 20, e3001598.	2.6	10
24	Expectations induced by natural-like temporal fluctuations are independent of attention decrement: Evidence from behavior and early visual evoked potentials. NeuroImage, 2015, 104, 278-286.	2.1	8
25	Beyond Motor Noise: Considering Other Causes of Impaired Reinforcement Learning in Cerebellar Patients. ENeuro, 2019, 6, ENEURO.0458-18.2019.	0.9	7
26	Trading accuracy for speed over the course of a decision. Journal of Neurophysiology, 2021, 126, 361-372.	0.9	7
27	Reward timing matters in motor learning. IScience, 2022, 25, 104290.	1.9	7
28	Validation of a double-coil TMS method to assess corticospinal excitability. Brain Stimulation, 2017, 10, 507.	0.7	6
29	An adaptive accuracy-weighted ensemble for inter-subjects classification in brain-computer interfacing. , 2015, , .		5
30	Role of the fronto-parietal cortex in prospective action judgments. Scientific Reports, 2021, 11, 7454.	1.6	5
31	A New Double-Coil TMS Method to Assess Corticospinal Excitability Bilaterally. Frontiers in Neuroscience, 0, 11, .	1.4	3
32	Graph-Based Transfer Learning for Managing Brain Signals Variability in NIRS-Based BCIs. Communications in Computer and Information Science, 2014, , 294-303.	0.4	2
33	Post-error Slowing Reflects the Joint Impact of Adaptive and Maladaptive Processes During Decision Making. Frontiers in Human Neuroscience, 0, 16, .	1.0	2
34	Validation of a new double-coil TMS method to assess corticospinal excitability bilaterally. Frontiers in Neuroscience, 0, 12, .	1.4	1
35	Probing preparatory inhibition bilaterally with double-coil TMS. Frontiers in Neuroscience, 0, 12, .	1.4	1
36	Impact of conflict expectation on selective attention and action selection processes during motor decisions: an EEG study. Frontiers in Neuroscience, 0, 11, .	1.4	0

GERARD DEROSIERE

#	Article	IF	CITATIONS
37	The role of Dopamine in Preparatory Inhibition: What can we learn from Parkinson's disease?. Frontiers in Neuroscience, 0, 12, .	1.4	0
38	Urgency tunes center-surround inhibition in the motor system during action selection. Frontiers in Neuroscience, 0, 13, .	1.4	0
39	Impact of reinforcement on action selection, initiation and execution during motor skill learning. Frontiers in Neuroscience, 0, 13, .	1.4	0
40	Action Preparation: an integrated Perspective of Choice and Motor Control. Frontiers in Neuroscience, 0, 13, .	1.4	0
41	The role of Dopamine in Preparatory Inhibition: What can we learn from Parkinson's disease?. Frontiers in Neuroscience, 0, 13, .	1.4	0
42	The effect of reward on motor plasticity during motor learning. Brain Stimulation, 2021, 14, 1683.	0.7	0