List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1572629/publications.pdf Version: 2024-02-01

ΙστνΔινιστ

#	Article	IF	CITATIONS
1	Application of chiral derivatizing agents in the high-performance liquid chromatographic separation of amino acid enantiomers: A review. Journal of Pharmaceutical and Biomedical Analysis, 2008, 47, 1-15.	1.4	178
2	HPLC separation of amino acid enantiomers and small peptides on macrocyclic antibiotic-based chiral stationary phases: A review. Journal of Separation Science, 2006, 29, 1305-1321.	1.3	151
3	TiO2-Based Photocatalytic Degradation of 2-Chlorophenol Adsorbed on Hydrophobic Clay. Environmental Science & Technology, 2002, 36, 3618-3624.	4.6	121
4	Degradation of naproxen by UV, VUV photolysis and their combination. Journal of Hazardous Materials, 2013, 262, 151-157.	6.5	104
5	Retention mechanism of high-performance liquid chromatographic enantioseparation on macrocyclic glycopeptide-based chiral stationary phases. Journal of Chromatography A, 2009, 1216, 1845-1860.	1.8	100
6	Investigation of the photodecomposition of phenol in near-UV-irradiated aqueous TiO2 suspensions. II. Effect of charge-trapping species on product distribution. Applied Catalysis A: General, 1999, 180, 35-45.	2.2	99
7	Removal of 2-chlorophenol from water by adsorption combined with TiO2 photocatalysis. Applied Catalysis B: Environmental, 2002, 39, 247-256.	10.8	98
8	Investigation of the photodecomposition of phenol in near-UV-irradiated aqueous TiO2 suspensions. I: Effect of charge-trapping species on the degradation kinetics. Applied Catalysis A: General, 1999, 180, 25-33.	2.2	97
9	Recent advances in the direct and indirect liquid chromatographic enantioseparation of amino acids and related compounds: A review. Journal of Pharmaceutical and Biomedical Analysis, 2012, 69, 28-41.	1.4	95
10	State-of-the-art enantioseparations of natural and unnatural amino acids by high-performance liquid chromatography. TrAC - Trends in Analytical Chemistry, 2016, 81, 11-22.	5.8	83
11	Chiral derivatizations applied for the separation of unusual amino acid enantiomers by liquid chromatography and related techniques. Journal of Chromatography A, 2013, 1296, 119-139.	1.8	64
12	High-performance liquid chromatographic enantioseparation of β-amino acid stereoisomers on a (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid-based chiral stationary phase. Journal of Chromatography A, 2006, 1125, 138-143.	1.8	56
13	Photocatalytic water treatment with different TiO2 nanoparticles and hydrophilic/hydrophobic layer silicate adsorbents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 230, 89-97.	2.3	55
14	Macrocyclic Antibiotic Selectors in Direct HPLC Enantioseparations. Separation and Purification Reviews, 2012, 41, 207-249.	2.8	50
15	Synthesis and characterization of titania photocatalysts: The influence of pretreatment on the activity. Applied Catalysis A: General, 2006, 303, 1-8.	2.2	48
16	Liquid chromatographic enantiomer separations applying chiral ion-exchangers based on Cinchona alkaloids. Journal of Pharmaceutical and Biomedical Analysis, 2018, 159, 127-152.	1.4	48
17	The photochemical behavior of hydrogen peroxide in near UV-irradiated aqueous TiO2 suspensions. Journal of Molecular Catalysis A, 1998, 135, 55-61.	4.8	45
18	Enantiomeric separation of nonproteinogenic amino acids by high-performance liquid chromatography. Journal of Chromatography A, 2012, 1269, 94-121.	1.8	44

#	Article	IF	CITATIONS
19	Mechanistic considerations of enantiorecognition on novel Cinchona alkaloid-based zwitterionic chiral stationary phases from the aspect of the separation of trans-paroxetine enantiomers as model compounds. Journal of Pharmaceutical and Biomedical Analysis, 2016, 124, 164-173.	1.4	39
20	Unusual Temperatureâ€Induced Retention Behavior of Constrained βâ€Amino Acid Enantiomers on the Zwitterionic Chiral Stationary Phases ZWIX(+) and ZWIX(–). Chirality, 2014, 26, 385-393.	1.3	37
21	Direct high-performance liquid chromatographic enantioseparation of secondary amino acids on Cinchona alkaloid-based chiral zwitterionic stationary phases. Unusual temperature behavior. Journal of Chromatography A, 2014, 1363, 169-177.	1.8	33
22	High-performance liquid chromatographic enantioseparation of monoterpene-based 2-amino carboxylic acids on macrocyclic glycopeptide-based phases. Journal of Chromatography A, 2010, 1217, 6956-6963.	1.8	29
23	LC Enantioseparation of β-Lactam and β-Amino Acid Stereoisomers and a Comparison of Macrocyclic Glycopeptide- and β-Cyclodextrin-Based Columns. Chromatographia, 2006, 63, S37-S43.	0.7	28
24	Enantioseparation of β2-amino acids on cinchona alkaloid-based zwitterionic chiral stationary phases. Structural and temperature effects. Journal of Chromatography A, 2014, 1334, 44-54.	1.8	28
25	High-performance liquid chromatographic enantioseparation of β-3-homo-amino acid stereoisomers on a (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid-based chiral stationary phase. Journal of Chromatography A, 2008, 1189, 285-291.	1.8	27
26	HPLC enantioseparation of β ² â€homoamino acids using crown etherâ€based chiral stationary phase. Journal of Separation Science, 2009, 32, 981-987.	1.3	27
27	Structural and temperature effects on enantiomer separations of bicyclo[2.2.2]octane-based 3-amino-2-carboxylic acids on cinchona alkaloid-based zwitterionic chiral stationary phases. Journal of Pharmaceutical and Biomedical Analysis, 2014, 98, 130-139.	1.4	27
28	Enantioseparation of β-substituted tryptophan analogues with modified cyclodextrins by capillary zone electrophoresis. Journal of Chromatography A, 2009, 1216, 3360-3365.	1.8	26
29	Comparison of performance of Chirobiotic T, T2 and TAG columns in the separation of β ² ― and β ³ â€homoamino acids. Journal of Separation Science, 2008, 31, 3688-3697.	1.3	25
30	High-performance liquid chromatographic enantioseparation of 1-(phenylethylamino)- or 1-(naphthylethylamino)methyl-2-naphthol analogs and a temperature-induced inversion of the elution sequence on polysaccharide-based chiral stationary phases. Journal of Chromatography A, 2011, 1218, 4869-4876.	1.8	25
31	Effect of mobile phase composition on the liquid chromatographic enantioseparation of bulky monoterpene-based β-amino acids by applying chiral stationary phases based on <i>Cinchona</i> alkaloid. Journal of Separation Science, 2014, 37, 1075-1082.	1.3	24
32	Highâ€performance liquid chromatographic enantioseparation of amino compounds on newly developed cyclofructanâ€based chiral stationary phases. Journal of Separation Science, 2012, 35, 617-624.	1.3	23
33	Application of Cinchona alkaloid-based zwitterionic chiral stationary phases in supercritical fluid chromatography for the enantioseparation of Nα-protected proteinogenic amino acids. Journal of Chromatography A, 2015, 1415, 134-145.	1.8	23
34	Vacuum ultraviolet photolysis of diclofenac and the effects of its treated aqueous solutions on the proliferation and migratory responses of Tetrahymena pyriformis. Science of the Total Environment, 2014, 468-469, 996-1006.	3.9	22
35	Enantioselective Liquid Chromatographic Separations Using Macrocyclic Glycopeptide-Based Chiral Selectors. Molecules, 2021, 26, 3380.	1.7	22
36	TiO2-Based Heterogeneous Photocatalytic Water Treatment Combined with Ozonation. Ozone: Science and Engineering, 2004, 26, 585-594.	1.4	21

#	Article	IF	CITATIONS
37	The role of ï€â€acidic and ï€â€basic chiral stationary phases in the highâ€performance liquid chromatographic enantioseparation of unusual βâ€amino acids. Chirality, 2009, 21, 339-348.	1.3	20
38	High-performance liquid chromatographic enantioseparation of 2-aminomono- and dihydroxycyclopentanecarboxylic and 2-aminodihydroxycyclohexanecarboxylic acids on macrocyclic glycopeptide-based phases. Journal of Chromatography A, 2009, 1216, 927-932.	1.8	20
39	B7 costimulation and intracellular indoleamine-2,3-dioxygenase (IDO) expression in peripheral blood of healthy pregnant and non-pregnant women. BMC Pregnancy and Childbirth, 2014, 14, 306.	0.9	20
40	Central nervous system-specific alterations in the tryptophan metabolism in the 3-nitropropionic acid model of Huntington's disease. Pharmacology Biochemistry and Behavior, 2015, 132, 115-124.	1.3	20
41	High-performance liquid chromatographic enantioseparation of cyclic β-aminohydroxamic acids on zwitterionic chiral stationary phases based on Cinchona alkaloids. Analytica Chimica Acta, 2016, 921, 84-94.	2.6	20
42	High-performance liquid chromatographic separation of paclitaxel intermediate phenylisoserine derivatives on macrocyclic glycopeptide and cyclofructan-based chiral stationary phases. Journal of Pharmaceutical and Biomedical Analysis, 2015, 114, 312-320.	1.4	19
43	Combinatorial effects of the configuration of the cationic and the anionic chiral subunits of four zwitterionic chiral stationary phases leading to reversal of elution order of cyclic β-amino acid enantiomers as ampholytic model compounds. Journal of Chromatography A, 2016, 1467, 178-187.	1.8	19
44	HPLC Enantioseparation of 1-(α-Aminobenzyl)-2-naphthol and 2-(α-Aminobenzyl)-1-naphthol Analogs on a β-Cyclodextrin-Based Chiral Stationary Phase. Chromatographia, 2007, 65, 337-341.	0.7	18
45	High-performance liquid chromatographic enantioseparation of β2-amino acids using a long-tethered (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid-based chiral stationary phase. Journal of Chromatography A, 2010, 1217, 1075-1082.	1.8	18
46	High-performance liquid chromatographic separation of unusual β3-amino acid enantiomers in different chromatographic modes on Cinchona alkaloid-based zwitterionic chiral stationary phases. Amino Acids, 2015, 47, 2279-2291.	1.2	18
47	High-performance liquid chromatographic enantioseparation of unusual isoxazoline-fused 2-aminocyclopentanecarboxylic acids on macrocyclic glycopeptide-based chiral stationary phases. Journal of Chromatography A, 2012, 1232, 142-151.	1.8	17
48	Highâ€performance liquid chromatographic enantioseparation of isoxazolineâ€fused 2â€aminocyclopentanecarboxylic acids on a chiral ligandâ€exchange stationary phase. Journal of Separation Science, 2013, 36, 1335-1342.	1.3	17
49	Liquid Chromatographic Enantioseparations Utilizing Chiral Stationary Phases Based on Crown Ethers and Cyclofructans. Molecules, 2021, 26, 4648.	1.7	17
50	High-performance liquid chromatographic enantioseparation of unusual secondary amino acids on a D-penicillamine-based chiral ligand exchange column. Chirality, 2006, 18, 539-543.	1.3	16
51	Cyclodextrinâ€mediated enantioseparation of phenylalanine amide derivatives and amino alcohols by capillary electrophoresis—Role of complexation constants and complex mobilities. Electrophoresis, 2014, 35, 2848-2854.	1.3	16
52	Comparison of the Separation Performances of Cinchona Alkaloid-Based Zwitterionic Stationary Phases in the Enantioseparation of β2- and β3-Amino Acids. Molecules, 2015, 20, 70-87.	1.7	16
53	Highâ€Performance Liquid Chromatographic Enantioseparation of Cyclic <i>β</i> â€Amino Acids on Zwitterionic Chiral Stationary Phases Based on <i>Cinchona</i> Alkaloids. Chirality, 2015, 27, 563-570.	1.3	16
54	Highâ€performance liquid chromatographic chiral separation of β ² â€homoamino acids. Chirality, 2009, 21, 787-798.	1.3	15

#	Article	IF	CITATIONS
55	Comparison of separation performances of novel β-cyclodextrin-based chiral stationary phases in high-performance liquid chromatographic enantioseparation. Journal of Pharmaceutical and Biomedical Analysis, 2012, 70, 71-76.	1.4	15
56	Liquid chromatographic enantioseparation of carbocyclic Î ² -amino acids possessing limonene skeleton on macrocyclic glycopeptide-based chiral stationary phases. Journal of Pharmaceutical and Biomedical Analysis, 2017, 145, 119-126.	1.4	15
57	Exploring the enantiorecognition mechanism of <i>Cinchona</i> alkaloidâ€based zwitterionic chiral stationary phases and the basic <i>trans</i> â€paroxetine enantiomers. Journal of Separation Science, 2018, 41, 1199-1207.	1.3	15
58	Highâ€Performance Liquid Chromatographic Enantioseparation of Unusual Isoxazolineâ€Fused 2â€Aminocyclopentanecarboxylic Acids on (+)â€(18â€Crownâ€6)â€2,3,11,12â€Tetracarboxylic Acidâ€Based Ch Stationary Phases. Chirality, 2012, 24, 817-824.	iral.3	14
59	Enantioseparations by High-Performance Liquid Chromatography Using Macrocyclic Glycopeptide-Based Chiral Stationary Phases: An Overview. Methods in Molecular Biology, 2013, 970, 137-163.	0.4	14
60	Highâ€performance liquid chromatographic enantioseparation of naphtholâ€substituted tetrahydroisoquinolines on polysaccharideâ€based chiral stationary phases. Biomedical Chromatography, 2014, 28, 142-151.	0.8	14
61	Comparative study on the liquid chromatographic enantioseparation of cyclic βâ€amino acids and the related cyclic βâ€aminohydroxamic acids on <i>Cinchona</i> alkaloidâ€based zwitterionic chiral stationary phases. Journal of Separation Science, 2018, 41, 1216-1223.	1.3	14
62	LC Enantioseparation of Aryl-Substituted β-Lactams Using Variable-Temperature Conditions. Chromatographia, 2006, 63, S29-S35.	0.7	13
63	Investigation of the structure–selectivity relationships and van't Hoff analysis of chromatographic stereoisomer separations of unusual isoxazoline-fused 2-aminocyclopentanecarboxylic acids on Cinchona alkaloid-based chiral stationary phases. Journal of Chromatography A, 2015, 1384, 67-75.	1.8	13
64	Exploring the enantioseparation of amino-naphthol analogues by supercritical fluid chromatography. Journal of Chromatography A, 2015, 1387, 123-133.	1.8	13
65	High-performance liquid chromatographic enantioseparation of cationic 1,2,3,4-tetrahydroisoquinoline analogs on Cinchona alkaloid-based zwitterionic chiral stationary phases. Analytical and Bioanalytical Chemistry, 2015, 407, 961-972.	1.9	13
66	Comparison of Ozone-based and other (VUV and TiO ₂ /UV) Radical Generation Methods in Phenol Decomposition. Ozone: Science and Engineering, 2002, 24, 49-54.	1.4	12
67	Comparison of column performances in direct high-performance liquid chromatographic enantioseparation of 1- or 3-methyl-substituted tetrahydroisoquinoline analogs. Application of direct and indirect methods. Biomedical Chromatography, 2005, 19, 459-465.	0.8	12
68	Enantioseparation of β-methyl-substituted amino acids with cyclodextrins by capillary zone electrophoresis☆. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 875, 273-279.	1.2	12
69	Comparison of Separation Performances of Cellulose-Based Chiral Stationary Phases in LC Enantioseparation of Aminonaphthol Analogues. Chromatographia, 2009, 70, 723-729.	0.7	12
70	Comparison of separation performances of amylose―and celluloseâ€based stationary phases in the highâ€performance liquid chromatographic enantioseparation of stereoisomers of βâ€lactams. Chirality, 2010, 22, 120-128.	1.3	12
71	Time-course of kynurenic acid concentration in mouse serum following the administration of a novel kynurenic acid analog. Journal of Pharmaceutical and Biomedical Analysis, 2011, 55, 540-543.	1.4	12
72	A Comparative Study of Enantioseparations of Nα-Fmoc Proteinogenic Amino Acids on Quinine-Based Zwitterionic and Anion Exchanger-Type Chiral Stationary Phases under Hydro-Organic Liquid and Subcritical Fluid Chromatographic Conditions. Molecules, 2016, 21, 1579.	1.7	12

#	Article	IF	CITATIONS
73	Liquid and subcritical fluid chromatographic enantioseparation of <i>N</i> ^α â€Fmoc proteinogenic amino acids on <i>Quinidine</i> â€based zwitterionic and anionâ€exchanger type chiral stationary phases. A comparative study. Chirality, 2017, 29, 225-238.	1.3	12
74	Enantioselective resolution of biologically active dipeptide analogs by high-performance liquid chromatography applying Cinchona alkaloid-based ion-exchanger chiral stationary phases. Journal of Chromatography A, 2020, 1611, 460574.	1.8	12
75	Analytical Methodologies for the Characterization and Analysis of the Parent Compound and Phase I Metabolites of 4F-MDMB-BICA in Human Microsome, Urine and Blood Samples. Journal of Analytical Toxicology, 2022, 46, 135-145.	1.7	12
76	CE Enantioseparation of Betti Bases with Cyclodextrins and Crown Ether as Chiral Selectors. Chromatographia, 2010, 71, 115-119.	0.7	11
77	High-performance liquid chromatographic enantioseparation of aminonaphthol analogs on polysaccharide-based chiral stationary phases. Journal of Chromatography A, 2010, 1217, 2980-2985.	1.8	11
78	Highâ€performance liquid chromatographic enantioseparation of Betti base analogs on a newly developed isopropyl carbamateâ€cyclofructan6â€based chiral stationary phase. Chirality, 2011, 23, 549-556.	1.3	11
79	Enantiomeric Separation of Bicyclo[2.2.2]octaneâ€Based 2â€Aminoâ€3â€Carboxylic Acids on Macrocyclic Glycopeptide Chiral Stationary Phases. Chirality, 2014, 26, 200-208.	1.3	11
80	High-performance liquid chromatographic enantioseparation of isopulegol-based ß-amino lactone and ß-amino amide analogs on polysaccharide-based chiral stationary phases focusing on the change of the enantiomer elution order. Journal of Chromatography A, 2020, 1621, 461054.	1.8	11
81	Polysaccharide-based chiral stationary phases as efficient tools for diastereo- and enantioseparation of natural and synthetic Cinchona alkaloid analogs. Journal of Pharmaceutical and Biomedical Analysis, 2021, 193, 113724.	1.4	11
82	SZR-104, a Novel Kynurenic Acid Analogue with High Permeability through the Blood–Brain Barrier. Pharmaceutics, 2021, 13, 61.	2.0	11
83	LC Enantioseparation of β-Amino Acids on a Crown Ether-Based Stationary Phase. Chromatographia, 2008, 68, 13-18.	0.7	10
84	LC Separation of Î ³ -Amino Acid Enantiomers. Chromatographia, 2010, 71, 13-19.	0.7	10
85	Enantioseparation of ß-carboline derivatives on polysaccharide- and strong cation exchanger-based chiral stationary phases. A comparative study. Journal of Chromatography A, 2016, 1467, 188-198.	1.8	10
86	Effects of N-methylation and amidination of cyclic β-amino acids on enantioselectivity and retention characteristics using Cinchona alkaloid- and sulfonic acid-based chiral zwitterionic stationary phases. Journal of Chromatography A, 2018, 1535, 72-79.	1.8	10
87	Dedicated comparisons of diverse polysaccharide- and zwitterionic Cinchona alkaloid-based chiral stationary phases probed with basic and ampholytic indole analogs in liquid and subcritical fluid chromatography mode. Journal of Chromatography A, 2018, 1563, 180-190.	1.8	10
88	Ultraâ€trace Analysis of Enantiomeric Impurities in Proteinogenic <i>N</i> â€Fmocâ€Aminoâ€acid Samples on <i>Cinchona</i> Alkaloidâ€based Chiral Stationary Phases. Israel Journal of Chemistry, 2016, 56, 1042-1051.	1.0	8
89	The establishment of tocopherol reference intervals for Hungarian adult population using a validated HPLC method. Biomedical Chromatography, 2017, 31, e3953.	0.8	7
90	Liquid chromatographic enantioseparation of limoneneâ€based carbocyclic βâ€amino acids on zwitterionic <i>Cinchona</i> alkaloidâ€based chiral stationary phases. Journal of Separation Science, 2017, 40, 3196-3204.	1.3	7

#	Article	IF	CITATIONS
91	Cyclodextrinâ€mediated capillary electrophoresis enantioseparation of dansylated βâ€amino acids with bicyclo[2.2.2]octane, bicyclo[3.1.1]heptane and cyclopenta[d][1,2]oxazole core structures. Electrophoresis, 2019, 40, 1931-1940.	1.3	7
92	High-Performance Liquid Chromatography Enantioseparations Using Macrocyclic Glycopeptide-Based Chiral Stationary Phases: An Overview. Methods in Molecular Biology, 2019, 1985, 201-237.	0.4	7
93	Liquid chromatographic resolution of natural and racemic Cinchona alkaloid analogues using strong cation- and zwitterion ion-exchange type stationary phases. Qualitative evaluation of stationary phase characteristics and mobile phase effects on stereoselectivity and retention. Journal of Chromatography A. 2020. 1609. 460498.	1.8	7
94	Unexpected effects of mobile phase solvents and additives on retention and resolution of N-acyl-D,L-leucine applying Cinchonane-based chiral ion exchangers. Journal of Chromatography A, 2021, 1648, 462212.	1.8	7
95	Enantioseparation of ß-amino acids by liquid chromatography using core-shell chiral stationary phases based on teicoplanin and teicoplanin aglycone. Journal of Chromatography A, 2021, 1653, 462383.	1.8	7
96	LC Enantioseparation of β-Lactam Stereoisomers through the Use of β-Cyclodextrin-Based Chiral Stationary Phases. Chromatographia, 2010, 71, 29-34.	0.7	6
97	Enantioseparation of ß-carboline, tetrahydroisoquinoline and benzazepine analogues of pharmaceutical importance: Utilization of chiral stationary phases based on polysaccharides and sulfonic acid modified Cinchonaalkaloids in high-performance liquid and subcritical fluid chromatography. Journal of Chromatography A. 2020. 1615. 460771.	1.8	6
98	High-performance liquid chromatographic separation of stereoisomers ofN-phthaloyl-protected amino acids and dipeptidomimetics. Journal of Separation Science, 2007, 30, 1881-1887.	1.3	5
99	Highâ€performance liquid chromatographic enantioseparation of amino alcohol analogues possessing 1,2,3,4â€tetrahydroisoquinoline skeleton on polysaccharideâ€based chiral stationary phases. Biomedical Chromatography, 2015, 29, 788-796.	0.8	5
100	Highâ€performance liquid chromatographic enantioseparation of fluorinated cyclic <i>β</i> ³ â€amino acid derivatives on polysaccharideâ€based chiral stationary phases. Comparison with nonfluorinated counterparts. Biomedical Chromatography, 2016, 30, 1441-1448.	0.8	5
101	Highâ€performance liquid chromatographic and subcritical fluid chromatographic separation of αâ€arylated ĂŸâ€carboline, N â€alkylated tetrahydroisoquinolines and their bioisosteres on polysaccharideâ€based chiral stationary phases. Journal of Separation Science, 2019, 42, 2779-2787.	1.3	5
102	Cinchona Alkaloid-Based Zwitterionic Chiral Stationary Phases Applied for Liquid Chromatographic Enantiomer Separations: An Overview. Methods in Molecular Biology, 2019, 1985, 251-277.	0.4	5
103	Chiral highâ€performance liquid and supercritical fluid chromatographic enantioseparations of limoneneâ€based bicyclic aminoalcohols and aminodiols on polysaccharideâ€based chiral stationary phases. Biomedical Chromatography, 2019, 33, e4517.	0.8	5
104	Heart-cutting two-dimensional liquid chromatography coupled to quadrupole-orbitrap high resolution mass spectrometry for determination of N,N-dimethyltryptamine in rat plasma and brain; Method development and application. Journal of Pharmaceutical and Biomedical Analysis, 2020, 191, 113615.	1.4	5
105	Enantiomeric separation of newly synthesized amino, thio, and oxy derivatives of monoterpene lactones, amides, and ester applying polysaccharide-based chiral stationary phases in normal-phase mode. Journal of Chromatography A, 2022, 1672, 463050.	1.8	5
106	Development of the high-performance liquid chromatographic method for the enantioseparation of unusual glycine ester analogs on polysaccharide-based chiral stationary phases. Journal of Pharmaceutical and Biomedical Analysis, 2013, 76, 183-191.	1.4	4
107	Macrocyclic glycopeptides- and derivatized cyclofructan-based chiral stationary phases for the enantioseparation of fluorinated ß-phenylalanine analogs. Journal of Pharmaceutical and Biomedical Analysis, 2022, 219, 114912.	1.4	4
108	High-performance liquid chromatographic evaluation of strong cation exchanger-based chiral stationary phases focusing on stationary phase characteristics and mobile phase effects employing enantiomers of tetrahydro-ÄŸ-carboline and 1,2,3,4-tetrahydroisoquinoline analogs. Journal of Chromatography A, 2021, 1644, 462121.	1.8	3

#	Article	IF	CITATIONS
109	Liquid-phase oxidation of cyclohexene and of tetralin by N2O in the presence of onium salts under mild experimental conditions. Journal of Molecular Catalysis A, 2007, 263, 48-54.	4.8	2
110	A simple chromatographic route for the isolation of <i>meso</i> diaminopimelic acid. Chirality, 2011, 23, 133-137.	1.3	2
111	Enantioselective high-performance liquid chromatographic separation of fluorinated ß- phenylalanine derivatives utilizing Cinchona alkaloid-based ion-exchanger chiral stationary phases. Journal of Chromatography A, 2022, 1670, 462974.	1.8	2
112	Comparison of UV- and UV/VUV-Induced Photolytic and Heterogeneous Photocatalytic Degradation of Phenol, with Particular Emphasis on the Intermediates. Journal of Advanced Oxidation Technologies, 2008, 11, .	0.5	1
113	Cinchona â€alkaloidâ€based zwitterionic chiral stationary phases as potential tools for highâ€performance liquid chromatographic enantioseparation of cationic compounds of pharmaceutical relevance. Journal of Separation Science, 2021, 44, 2735-2743.	1.3	1
114	Preparation and Photocatalytic Application of Different Tio2 and Zn(OH)2/ZnO Nanoparticles and Hydrophilic/Hydrophobic Layered Silicates. , 2003, , 425-443.		0