Helen Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1572481/publications.pdf Version: 2024-02-01

HELEN LONES

#	Article	IF	CITATIONS
1	Clinical exercise provision in the UK: comparison of staff job titles, roles and qualifications across five specialised exercise services. BMJ Open Sport and Exercise Medicine, 2022, 8, e001152.	1.4	5
2	High-Intensity Interval Training in Polycystic Ovary Syndrome. Medicine and Science in Sports and Exercise, 2022, Publish Ahead of Print, .	0.2	3
3	Cool-Water Immersion Reduces Post-Exercise Quadriceps Femoris Muscle Perfusion more than Cold-Water Immersion. Medicine and Science in Sports and Exercise, 2022, Publish Ahead of Print, .	0.2	1
4	Cardiovascular Health Does Not Change Following High-Intensity Interval Training in Women with Polycystic Ovary Syndrome. Journal of Clinical Medicine, 2022, 11, 1626.	1.0	0
5	The impact of age, sex, cardio-respiratory fitness, and cardiovascular disease risk on dynamic cerebral autoregulation and baroreflex sensitivity. European Journal of Applied Physiology, 2022, 122, 1531-1541.	1.2	5
6	Charter to establish clinical exercise physiology as a recognised allied health profession in the UK: a call to action. BMJ Open Sport and Exercise Medicine, 2021, 7, e001158.	1.4	14
7	Can exercise training enhance the repeated remote ischaemic preconditioning stimulus on peripheral and cerebrovascular function in high-risk individuals?. European Journal of Applied Physiology, 2021, 121, 1167-1178.	1.2	4
8	<i>Mo</i> bile Heal <i>t</i> h B <i>i</i> ometrics to Enhance Exercise and Physical Acti <i>v</i> ity <i>A</i> dherence in <i>T</i> yp <i>e</i> 2 Diabetes (MOTIVATE-T2D): protocol for a feasibility randomised controlled trial. BMJ Open, 2021, 11, e052563.	0.8	6
9	Cerebral and peripheral vascular differences between pre- and postmenopausal women. Menopause, 2020, 27, 170-182.	0.8	14
10	Ischemic Preconditioning Improves Microvascular Endothelial Function in Remote Vasculature by Enhanced Prostacyclin Production. Journal of the American Heart Association, 2020, 9, e016017.	1.6	25
11	The impact of acute remote ischaemic preconditioning on cerebrovascular function. European Journal of Applied Physiology, 2020, 120, 603-612.	1.2	12
12	Improving reproductive function in women with polycystic ovary syndrome with high-intensity interval training (IMPROV-IT): study protocol for a two-centre, three-armed randomised controlled trial. BMJ Open, 2020, 10, e034733.	0.8	10
13	Effects of Acute Exercise on Cutaneous Thermal Sensation. International Journal of Environmental Research and Public Health, 2020, 17, 2491.	1.2	1
14	Is core temperature the trigger of a menopausal hot flush?. Menopause, 2019, 26, 1016-1023.	0.8	8
15	Enhancing Sports Performance Through Ischemic Preconditioning. , 2019, , 213-222.		5
16	Seven-day remote ischaemic preconditioning improves endothelial function in patients with type 2 diabetes mellitus: a randomised pilot study. European Journal of Endocrinology, 2019, 181, 659-669.	1.9	12
17	Is There an Optimal Ischemic-Preconditioning Dose to Improve Cycling Performance?. International Journal of Sports Physiology and Performance, 2018, 13, 274-282.	1.1	36
18	Association of Exercise Preconditioning With Immediate Cardioprotection. JAMA Cardiology, 2018, 3, 169.	3.0	81

Helen Jones

#	Article	IF	CITATIONS
19	Conduit Artery Diameter During Exercise Is Enhanced After Local, but Not Remote, Ischemic Preconditioning. Frontiers in Physiology, 2018, 9, 435.	1.3	14
20	In Reply:. Menopause, 2017, 24, 118-120.	0.8	0
21	Exercise training reduces the acute physiological severity of postâ€menopausal hot flushes. Journal of Physiology, 2016, 594, 657-667.	1.3	23
22	Repeated ischaemic preconditioning: a novel therapeutic intervention and potential underlying mechanisms. Experimental Physiology, 2016, 101, 677-692.	0.9	30
23	Impact of eight weeks of repeated ischaemic preconditioning on brachial artery and cutaneous microcirculatory function in healthy males. European Journal of Preventive Cardiology, 2015, 22, 1083-1087.	0.8	59
24	Endothelial dysfunction in hyperandrogenic polycystic ovary syndrome is not explained by either obesity or ectopic fat deposition. Clinical Science, 2014, 126, 67-74.	1.8	32
25	Blood pressure regulation VII. The "morning surge―in blood pressure: measurement issues and clinical significance. European Journal of Applied Physiology, 2014, 114, 521-529.	1.2	10
26	Seven-Day Remote Ischemic Preconditioning Improves Local and Systemic Endothelial Function and Microcirculation in Healthy Humans. American Journal of Hypertension, 2014, 27, 918-925.	1.0	110
27	Relationship Between Cerebral Blood Flow and Blood Pressure in Long-Term Heart Transplant Recipients. Hypertension, 2014, 64, 1314-1320.	1.3	35
28	Exercise training and artery function in humans: nonresponse and its relationship to cardiovascular risk factors. Journal of Applied Physiology, 2014, 117, 345-352.	1.2	67
29	Initial orthostatic hypotension and cerebral blood flow regulation: effect of α ₁ -adrenoreceptor activity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R147-R154.	0.9	21
30	Endothelial function measured using flowâ€mediated dilation in polycystic ovary syndrome: a metaâ€analysis of the observational studies. Clinical Endocrinology, 2013, 78, 438-446.	1.2	102
31	Exercise training improves cutaneous microvascular function in nonalcoholic fatty liver disease. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E50-E58.	1.8	54
32	Exercise Training in Polycystic Ovarian Syndrome Enhances Flow-Mediated Dilation in the Absence of Changes in Fatness. Medicine and Science in Sports and Exercise, 2013, 45, 2234-2242.	0.2	38
33	Diurnal Variation in Vascular Function: Role of Sleep. Chronobiology International, 2012, 29, 271-277.	0.9	23
34	The Effect of Time-of-Day and Sympathetic $\hat{I}\pm 1$ -Blockade on Orthostatic Tolerance. Chronobiology International, 2012, 29, 882-890.	0.9	7
35	Neuromechanical Features of the Cardiac Baroreflex After Exercise. Hypertension, 2011, 57, 927-933.	1.3	25
36	Flow-Mediated Dilation and Cardiovascular Event Prediction. Hypertension, 2011, 57, 363-369.	1.3	430

Helen Jones

#	Article	IF	CITATIONS
37	α1-Adrenoreceptor activity does not explain lower morning endothelial-dependent, flow-mediated dilation in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R1437-R1442.	0.9	15
38	Circadian variation in the circulatory responses to exercise: relevance to the morning peaks in strokes and cardiac events. European Journal of Applied Physiology, 2010, 108, 15-29.	1.2	48
39	Intermittent exercise abolishes the diurnal variation in endothelial-dependent flow-mediated dilation in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R427-R432.	0.9	63
40	Postâ€Exercise Blood Pressure Reduction Is Greater Following Intermittent Than Continuous Exercise and Is Influenced Less by Diurnal Variation. Chronobiology International, 2009, 26, 293-306.	0.9	47
41	Prior Exercise Lowers Blood Pressure During Simulated Night-Work With Different Meal Schedules. American Journal of Hypertension, 2009, 22, 835-841.	1.0	12
42	Is the ratio of flow-mediated dilation and shear rate a statistically sound approach to normalization in cross-sectional studies on endothelial function?. Journal of Applied Physiology, 2009, 107, 1893-1899.	1.2	91
43	24-Hour Variation in the Reactivity of Rate-Pressure-Product to Everyday Physical Activity in Patients Attending a Hypertension Clinic. Chronobiology International, 2009, 26, 958-973.	0.9	27
44	Timing of Exercise Within the Waking Period Does Not Alter Blood Pressure During Subsequent Nocturnal Sleep in Normotensive Individuals. Journal of Exercise Science and Fitness, 2009, 7, S42-S50.	0.8	2
45	Evidence for a Greater Elevation in Vascular Shear Stress after Morning Exercise. Medicine and Science in Sports and Exercise, 2009, 41, 1188-1193.	0.2	20
46	The acute post-exercise response of blood pressure varies with time of day. European Journal of Applied Physiology, 2008, 104, 481-489.	1.2	68
47	Changes in vascular and cardiac function after prolonged strenuous exercise in humans. Journal of Applied Physiology, 2008, 105, 1562-1568.	1.2	104
48	Effects of Time of Day on Postâ€Exercise Blood Pressure: Circadian or Sleepâ€Related Influences?. Chronobiology International, 2008, 25, 987-998.	0.9	47
49	Is the magnitude of acute post-exercise hypotension mediated by exercise intensity or total work done?. European Journal of Applied Physiology, 2007, 102, 33-40.	1.2	87
50	Reactivity of Ambulatory Blood Pressure to Physical Activity Varies With Time of Day. Hypertension, 2006, 47, 778-784.	1.3	75