Dibakar Mondal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1572390/publications.pdf

Version: 2024-02-01

840776 940533 16 295 11 16 citations h-index g-index papers 16 16 16 387 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhanced Mechanical Properties of 3D Printed Nanocomposites Composed of Functionalized Plant-Derived Biopolymers and Calcium-Deficient Hydroxyapatite Nanoparticles. Frontiers in Materials, 2022, 9, .	2.4	11
2	Acrylated epoxidized soybean oil/hydroxyapatite-based nanocomposite scaffolds prepared by additive manufacturing for bone tissue engineering. Materials Science and Engineering C, 2021, 118, 111400.	7.3	28
3	mSLA-based 3D printing of acrylated epoxidized soybean oil - nano-hydroxyapatite composites for bone repair. Materials Science and Engineering C, 2021, 130, 112456.	7.3	28
4	Sol-Gel Derived Tertiary Bioactive Glass–Ceramic Nanorods Prepared via Hydrothermal Process and Their Composites with Poly(Vinylpyrrolidone-Co-Vinylsilane). Journal of Functional Biomaterials, 2020, 11, 35.	4.4	4
5	Mechanical properties of nanocomposite biomaterials improved by extrusion during direct ink writing. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104, 103653.	3.1	28
6	Bone Repair and Regenerative Biomaterials: Towards Recapitulating the Microenvironment. Polymers, 2019, 11, 1437.	4.5	46
7	Porous and biodegradable polycaprolactone-borophosphosilicate hybrid scaffolds for osteoblast infiltration and stem cell differentiation. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 92, 162-171.	3.1	18
8	Bioactivity, Degradation, and Mechanical Properties of Poly(vinylpyrrolidone-co-triethoxyvinylsilane)/Tertiary Bioactive Glass Hybrids. ACS Applied Bio Materials, 2018, 1, 1369-1381.	4.6	5
9	Mechanically-competent and cytocompatible polycaprolactone-borophosphosilicate hybrid biomaterials. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 75, 180-189.	3.1	20
10	Bioactive borophosphosilicate-polycaprolactone hybrid biomaterials via a non-aqueous sol gel process. RSC Advances, 2016, 6, 92824-92832.	3.6	21
11	In Vitro Study of CaTiO3–Hydroxyapatite Composites for Bone Tissue Engineering. ASAIO Journal, 2014, 60, 722-729.	1.6	15
12	Fabrication and characterization of ZrO2–CaO–P2O5–Na2O–SiO2 bioactive glass ceramics. Journal of Materials Science, 2013, 48, 1863-1872.	3.7	24
13	Microstructure and biocompatibility of composite biomaterials fabricated from titanium and tricalcium phosphate by spark plasma sintering. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1489-1501.	4.0	23
14	Fabrication of multilayer ZrO ₂ â€"biphasic calcium phosphateâ€"poly-caprolactone unidirectional channeled scaffold for bone tissue formation. Journal of Biomaterials Applications, 2013, 28, 462-472.	2.4	15
15	Comparative Study of Microstructures and Material Properties in the Vacuum and Spark Plasma Sintered Ti-Calcium Phosphate Composites. Materials Transactions, 2011, 52, 1436-1442.	1.2	8
16	Fabrication and characterization of the Ti-Ca-P composites by vacuum sintering. Journal of Biomedical Science and Engineering, 2011, 04, 583-590.	0.4	1