
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1571874/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science, 2020, 369, 956-963.	6.0	1,287
2	Proteome-wide covalent ligand discovery in native biological systems. Nature, 2016, 534, 570-574.	13.7	651
3	Persistent LCMV Infection Is Controlled by Blockade of Type I Interferon Signaling. Science, 2013, 340, 207-211.	6.0	643
4	Endothelial Cells Are Central Orchestrators of Cytokine Amplification during Influenza Virus Infection. Cell, 2011, 146, 980-991.	13.5	582
5	Cutting Edge: Tissue-Retentive Lung Memory CD4 T Cells Mediate Optimal Protection to Respiratory Virus Infection. Journal of Immunology, 2011, 187, 5510-5514.	0.4	536
6	COVID-19 vaccines: modes of immune activation and future challenges. Nature Reviews Immunology, 2021, 21, 195-197.	10.6	529
7	Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic. Science, 2020, 369, 993-999.	6.0	259
8	PAD4-Mediated Neutrophil Extracellular Trap Formation Is Not Required for Immunity against Influenza Infection. PLoS ONE, 2011, 6, e22043.	1.1	257
9	Suppression of cytokine storm with a sphingosine analog provides protection against pathogenic influenza virus. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12018-12023.	3.3	217
10	An Activity-Guided Map of Electrophile-Cysteine Interactions in Primary Human T Cells. Cell, 2020, 182, 1009-1026.e29.	13.5	194
11	Type I interferons in viral control and immune regulation. Current Opinion in Virology, 2016, 16, 31-40.	2.6	192
12	Mapping the innate signaling cascade essential for cytokine storm during influenza virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3799-3804.	3.3	191
13	Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity, 2021, 54, 1463-1477.e11.	6.6	179
14	GM-CSF-based treatments in COVID-19: reconciling opposing therapeutic approaches. Nature Reviews Immunology, 2020, 20, 507-514.	10.6	174
15	Memory CD4 T Cells Direct Protective Responses to Influenza Virus in the Lungs through Helper-Independent Mechanisms. Journal of Virology, 2010, 84, 9217-9226.	1.5	165
16	MicroRNAs of the miR-17â^1⁄492 family are critical regulators of TFH differentiation. Nature Immunology, 2013, 14, 849-857.	7.0	162
17	Blockade of Interferon Beta, but Not Interferon Alpha, Signaling Controls Persistent Viral Infection. Cell Host and Microbe, 2015, 17, 653-661.	5.1	151
18	Cutting Edge: B Cell–Intrinsic T-bet Expression Is Required To Control Chronic Viral Infection. Journal of Immunology, 2016, 197, 1017-1022.	0.4	143

2

#	Article	IF	CITATIONS
19	Chemical proteomic map of dimethyl fumarate–sensitive cysteines in primary human T cells. Science Signaling, 2016, 9, rs10.	1.6	141
20	Control of Memory CD4 T Cell Recall by the CD28/B7 Costimulatory Pathway. Journal of Immunology, 2006, 177, 7698-7706.	0.4	124
21	A human antibody reveals a conserved site on beta-coronavirus spike proteins and confers protection against SARS-CoV-2 infection. Science Translational Medicine, 2022, 14, eabi9215.	5.8	123
22	Cytokine storms in infectious diseases. Seminars in Immunopathology, 2017, 39, 501-503.	2.8	109
23	CTLA4 Expression Is an Indicator and Regulator of Steady-State CD4+FoxP3+ T Cell Homeostasis. Journal of Immunology, 2008, 181, 1806-1813.	0.4	103
24	PLD3 and PLD4 are single-stranded acid exonucleases that regulate endosomal nucleic-acid sensing. Nature Immunology, 2018, 19, 942-953.	7.0	88
25	Drug repurposing screens identify chemical entities for the development of COVID-19 interventions. Nature Communications, 2021, 12, 3309.	5.8	81
26	Toll-like Receptor 7 Is Required for Effective Adaptive Immune Responses that Prevent Persistent Virus Infection. Cell Host and Microbe, 2012, 11, 643-653.	5.1	68
27	Detecting Tumor Antigen-Specific T Cells via Interaction-Dependent Fucosyl-Biotinylation. Cell, 2020, 183, 1117-1133.e19.	13.5	66
28	Animal Model of Respiratory Syncytial Virus: CD8 ⁺ T Cells Cause a Cytokine Storm That Is Chemically Tractable by Sphingosine-1-Phosphate 1 Receptor Agonist Therapy. Journal of Virology, 2014, 88, 6281-6293.	1.5	62
29	Type I interferon is a therapeutic target for virus-induced lethal vascular damage. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8925-8930.	3.3	56
30	Selective blockade of the lyso-PS lipase ABHD12 stimulates immune responses in vivo. Nature Chemical Biology, 2018, 14, 1099-1108.	3.9	55
31	Costimulation Modulation Uncouples Protection from Immunopathology in Memory T Cell Responses to Influenza Virus. Journal of Immunology, 2009, 182, 6834-6843.	0.4	54
32	Quelling the storm: utilization of sphingosine-1-phosphate receptor signaling to ameliorate influenza virus-induced cytokine storm. Immunologic Research, 2011, 51, 15-25.	1.3	54
33	The Role of Cytokine Responses During Influenza Virus Pathogenesis and Potential Therapeutic Options. Current Topics in Microbiology and Immunology, 2014, 386, 3-22.	0.7	54
34	S1PR1-mediated IFNAR1 degradation modulates plasmacytoid dendritic cell interferon-α autoamplification. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1351-1356.	3.3	50
35	The anti-tumor agent, 5,6-dimethylxanthenone-4-acetic acid (DMXAA), induces IFN-β-mediated antiviral activity in vitro and in vivo. Journal of Leukocyte Biology, 2010, 89, 351-357.	1.5	46
36	IL-27 promotes the expansion of self-renewing CD8+ T cells in persistent viral infection. Journal of Experimental Medicine, 2019, 216, 1791-1808.	4.2	45

#	Article	IF	CITATIONS
37	Dimethyl Fumarate Disrupts Human Innate Immune Signaling by Targeting the IRAK4–MyD88 Complex. Journal of Immunology, 2019, 202, 2737-2746.	0.4	43
38	PTPN22 contributes to exhaustion of T lymphocytes during chronic viral infection. Proceedings of the United States of America, 2016, 113, E7231-E7239.	3.3	38
39	Bordetella pertussis Infection Exacerbates Influenza Virus Infection through Pertussis Toxin-Mediated Suppression of Innate Immunity. PLoS ONE, 2011, 6, e19016.	1.1	34
40	Early Virus-Host Interactions Dictate the Course of a Persistent Infection. PLoS Pathogens, 2015, 11, e1004588.	2.1	34
41	Discovery of Small Molecules for the Reversal of T Cell Exhaustion. Cell Reports, 2019, 29, 3293-3302.e3.	2.9	34
42	TLR2 Engagement on Dendritic Cells Promotes High Frequency Effector and Memory CD4 T Cell Responses. Journal of Immunology, 2009, 183, 7832-7841.	0.4	33
43	Three Phases of CD8 T Cell Response in the Lung Following H1N1 Influenza Infection and Sphingosine 1 Phosphate Agonist Therapy. PLoS ONE, 2013, 8, e58033.	1.1	32
44	General Molecular Strategy for Development of Arenavirus Live-Attenuated Vaccines. Journal of Virology, 2015, 89, 12166-12177.	1.5	31
45	Metabolizing Data in the Cloud. Trends in Biotechnology, 2017, 35, 481-483.	4.9	29
46	Rational design of a Kv1.3 channel-blocking antibody as a selective immunosuppressant. Proceedings of the United States of America, 2016, 113, 11501-11506.	3.3	27
47	Protection of ferrets from pulmonary injury due to H1N1 2009 influenza virus infection: Immunopathology tractable by sphingosine-1-phosphate 1 receptor agonist therapy. Virology, 2014, 452-453, 152-157.	1.1	26
48	Sialic Acid Ligands of CD28 Suppress Costimulation of T Cells. ACS Central Science, 2021, 7, 1508-1515.	5.3	24
49	The solute carrier SLC15A4 is required for optimal trafficking of nucleic acid–sensing TLRs and ligands to endolysosomes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200544119.	3.3	24
50	Expanded Potential for Recombinant Trisegmented Lymphocytic Choriomeningitis Viruses: Protein Production, Antibody Production, and <i>In Vivo</i> Assessment of Biological Function of Genes of Interest. Journal of Virology, 2011, 85, 7928-7932.	1.5	23
51	Diverse immunoglobulin gene usage and convergent epitope targeting in neutralizing antibody responses to SARS-CoV-2. Cell Reports, 2021, 35, 109109.	2.9	21
52	Hypomorphic Mutation in the Site-1 Protease Mbtps1 Endows Resistance to Persistent Viral Infection in a Cell-Specific Manner. Cell Host and Microbe, 2011, 9, 212-222.	5.1	20
53	HYBRiD: hydrogel-reinforced DISCO for clearing mammalian bodies. Nature Methods, 2022, 19, 479-485.	9.0	20
54	The probacterial effect of type I interferon signaling requires its own negative regulator USP18. Science Immunology, 2018, 3, .	5.6	19

#	Article	IF	CITATIONS
55	Heterogeneous Memory T Cells in Antiviral Immunity and Immunopathology. Viral Immunology, 2008, 21, 99-114.	0.6	18
56	Microglia Do Not Restrict SARS-CoV-2 Replication following Infection of the Central Nervous System of K18-Human ACE2 Transgenic Mice. Journal of Virology, 2022, 96, jvi0196921.	1.5	18
57	Identification of an N-acetylneuraminic acid-presenting bacteria isolated from a human microbiome. Scientific Reports, 2021, 11, 4763.	1.6	16
58	Influenza NS1 directly modulates Hedgehog signaling during infection. PLoS Pathogens, 2017, 13, e1006588.	2.1	14
59	B cell–derived IL-27 promotes control of persistent LCMV infection. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	13
60	Salicylanilides Reduce SARS-CoV-2 Replication and Suppress Induction of Inflammatory Cytokines in a Rodent Model. ACS Infectious Diseases, 2021, 7, 2229-2237.	1.8	12
61	Endogenously produced catecholamines improve the regulatory function of TLR9-activated B cells. PLoS Biology, 2022, 20, e3001513.	2.6	12
62	IFNAR1 signaling in NK cells promotes persistent virus infection. Science Advances, 2021, 7, .	4.7	10
63	Too much of a good thing: Sustained type 1 interferon signaling limits humoral responses to secondary viral infection. European Journal of Immunology, 2016, 46, 300-302.	1.6	7
64	IFN-β, but not IFN-α, is Responsible for the Pro-Bacterial Effect of Type I Interferon. Cellular Physiology and Biochemistry, 2021, 55, 256-264.	1.1	6
65	A Peptide-Major Histocompatibility Complex II Chimera Favors Survival of Pancreatic β-Ιslets Grafted in Type 1 Diabetic Mice. Transplantation, 2008, 85, 1717-1725.	0.5	5
66	Induction of Cross-Reactive and Protective Antibody Responses After DNA Vaccination With MHCII-Targeted Stem Domain From Influenza Hemagglutinin. Frontiers in Immunology, 2020, 11, 431.	2.2	4
67	Parallels Between the Antiviral State and the Irradiated State. Journal of the National Cancer Institute, 2021, 113, 969-979.	3.0	4
68	Presentation of Autoantigen in Peripheral Lymph Nodes Is Sufficient for Priming Autoreactive CD8+ T Cells. Frontiers in Immunology, 2017, 8, 113.	2.2	3
69	Taking down defenses to improve vaccines. Science, 2018, 359, 277-278.	6.0	3
70	Editorial overview: Viral immunology. Current Opinion in Virology, 2019, 34, vii-viii.	2.6	0