
Saptarshi Mukherjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1571487/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Luminescent Copper Nanoclusters as a Specific Cell-Imaging Probe and a Selective Metal Ion Sensor. Journal of Physical Chemistry C, 2015, 119, 24657-24664.	3.1	149
2	Spectroscopic Probing of the Microenvironment in a Proteinâ [^] Surfactant Assembly. Journal of Physical Chemistry B, 2010, 114, 15839-15845.	2.6	142
3	Exploring the Mechanism of Fluorescence Quenching in Proteins Induced by Tetracycline. Journal of Physical Chemistry B, 2011, 115, 6312-6320.	2.6	136
4	Reversibility in protein folding: effect of β-cyclodextrin on bovine serum albumin unfolded by sodium dodecyl sulphate. Physical Chemistry Chemical Physics, 2013, 15, 9375.	2.8	93
5	Binding Interaction of a Prospective Chemotherapeutic Antibacterial Drug with β-Lactoglobulin: Results and Challenges. Langmuir, 2014, 30, 5921-5929.	3.5	90
6	Hydrophobicity Is the Governing Factor in the Interaction of Human Serum Albumin with Bile Salts. Langmuir, 2015, 31, 1095-1104.	3.5	80
7	Solvation dynamics of 4-aminophthalimide in dioxane–water mixture. Chemical Physics Letters, 2004, 384, 128-133.	2.6	76
8	Photostable Copper Nanoclusters: Compatible Förster Resonance Energy-Transfer Assays and a Nanothermometer. Journal of Physical Chemistry Letters, 2015, 6, 1293-1298.	4.6	75
9	Interplay of Multiple Interaction Forces: Binding of Norfloxacin to Human Serum Albumin. Journal of Physical Chemistry B, 2015, 119, 13093-13102.	2.6	74
10	Luminescent Silver Nanoclusters Acting as a Label-Free Photoswitch in Metal Ion Sensing. Analytical Chemistry, 2014, 86, 3188-3194.	6.5	72
11	Toggling Between Blue- and Red-Emitting Fluorescent Silver Nanoclusters. Journal of Physical Chemistry Letters, 2012, 3, 3605-3609.	4.6	71
12	Binding, unfolding and refolding dynamics of serum albumins. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 5394-5404.	2.4	69
13	Deciphering the role of pH in the binding of Ciprofloxacin Hydrochloride to Bovine Serum Albumin. Physical Chemistry Chemical Physics, 2012, 14, 4250.	2.8	67
14	Fluorescent Metal Nano-Clusters as Next Generation Fluorescent Probes for Cell Imaging and Drug Delivery. Bulletin of the Chemical Society of Japan, 2018, 91, 447-454.	3.2	63
15	Protein-protected metal nanoclusters as diagnostic and therapeutic platforms for biomedical applications. Materials Today, 2023, 66, 159-193.	14.2	59
16	Protein unfolding and subsequent refolding: a spectroscopic investigation. Physical Chemistry Chemical Physics, 2011, 13, 20418.	2.8	57
17	Solvation Dynamics in the Water Pool of an Aerosol-OT Microemulsion. Effect of Sodium Salicylate and Sodium Cholate. Journal of Physical Chemistry B, 2003, 107, 10815-10822.	2.6	56
18	Inverse Temperature Dependence in Static Quenching versus Calorimetric Exploration: Binding Interaction of Chloramphenicol to β-Lactoglobulin. Langmuir, 2015, 31, 8074-8080.	3.5	52

#	Article	IF	CITATIONS
19	Spectroscopic determination of Critical Micelle Concentration in aqueous and non-aqueous media using a non-invasive method. Journal of Colloid and Interface Science, 2011, 364, 400-406.	9.4	51
20	Solvation Dynamics in Bile Salt Aggregates. Journal of Physical Chemistry B, 2002, 106, 7745-7750.	2.6	49
21	Temperature dependence of solvation dynamics in a micelle. 4-Aminophthalimide in Triton X-100. Chemical Physics Letters, 2004, 385, 357-361.	2.6	49
22	Solvation dynamics in a protein–surfactant complex. Chemical Physics Letters, 2003, 377, 229-235.	2.6	46
23	Solvation Dynamics in the Molten Globule State of a Protein. Journal of Physical Chemistry B, 2003, 107, 14563-14568.	2.6	45
24	Probing Single-Molecule Enzyme Active-Site Conformational State Intermittent Coherence. Journal of the American Chemical Society, 2011, 133, 14389-14395.	13.7	45
25	Temperature Induced Morphological Transitions from Native to Unfolded Aggregated States of Human Serum Albumin. Journal of Physical Chemistry B, 2014, 118, 7267-7276.	2.6	45
26	Interaction of Bile Salts with β-Cyclodextrins Reveals Nonclassical Hydrophobic Effect and Enthalpy–Entropy Compensation. Journal of Physical Chemistry B, 2016, 120, 3963-3968.	2.6	42
27	Direct insight into the nonclassical hydrophobic effect in bile salt:β-cyclodextrin interaction: role of hydrophobicity in governing the prototropism of a biological photosensitizer. RSC Advances, 2016, 6, 9984-9993.	3.6	40
28	Enhanced Binding of Phenosafranin to Triblock Copolymer F127 Induced by Sodium Dodecyl Sulfate: A Mixed Micellar System as an Efficient Drug Delivery Vehicle. Journal of Physical Chemistry B, 2016, 120, 2968-2976.	2.6	39
29	Structure, Activity, and Dynamics of Human Serum Albumin in a Crowded Pluronic F127 Hydrogel. Journal of Physical Chemistry B, 2019, 123, 3397-3408.	2.6	39
30	Microheterogeneity and Microviscosity of F127 Micelle: The Counter Effects of Urea and Temperature. Langmuir, 2014, 30, 1012-1021.	3.5	36
31	Solvation dynamics in DMPC vesicle in the presence of a protein. Chemical Physics Letters, 2003, 382, 426-433.	2.6	31
32	Prototropic Transformation and Rotational–Relaxation Dynamics of a Biological Photosensitizer Norharmane inside Nonionic Micellar Aggregates. Journal of Physical Chemistry B, 2014, 118, 11209-11219.	2.6	28
33	Preferential Binding of Thioflavin T to AT-Rich DNA: White Light Emission through Intramolecular FA¶rster Resonance Energy Transfer. Journal of Physical Chemistry Letters, 2020, 11, 2436-2442.	4.6	27
34	Micelles of Benzethonium Chloride undergoes spherical to cylindrical shape transformation: An intrinsic fluorescence and calorimetric approach. Chemical Physics Letters, 2014, 593, 115-121.	2.6	26
35	Contrasting Effects of Salt and Temperature on Niosome-Bound Norharmane: Direct Evidence for Positive Heat Capacity Change in the Niosome:Î ² -Cyclodextrin Interaction. Journal of Physical Chemistry B, 2016, 120, 4091-4101.	2.6	26
36	Excited State Proton Transfer of 1-Naphthol in a Hydroxypropylcellulose/Sodium Dodecyl Sulfate System. Langmuir, 2002, 18, 7867-7871.	3.5	25

SAPTARSHI MUKHERJEE

#	Article	IF	CITATIONS
37	White Light Generation through <scp>l</scp> -Ascorbic Acid-Templated Thermoresponsive Copper Nanoclusters. ACS Sustainable Chemistry and Engineering, 2022, 10, 1379-1389.	6.7	25
38	Solvation dynamics of TNS in polymer (PEG)–surfactant (SDS) aggregate. Chemical Physics Letters, 2002, 359, 15-21.	2.6	24
39	Solvation Dynamics of DCM in a DPPC Vesicle Entrapped in a Sodium Silicate Derived Solâ^'Gel Matrix. Journal of Physical Chemistry B, 2005, 109, 3319-3323.	2.6	22
40	Exploring the Self-Assembly of a Short Aromatic Aβ(16–24) Peptide. Langmuir, 2013, 29, 2713-2721.	3.5	22
41	Discriminating Single Base Pair Mismatches in DNA Using Glutathione-Templated Copper Nanoclusters. Journal of Physical Chemistry C, 2019, 123, 29047-29056.	3.1	22
42	Protein-templated gold nanoclusters as specific bio-imaging probes for the detection of Hg(ii) ions in in vivo and in vitro systems: discriminating between MDA-MB-231 and MCF10A cells. Analyst, The, 2021, 146, 1455-1463.	3.5	22
43	Quenching interaction of BSA with DTAB is dynamic in nature: A spectroscopic insight. Chemical Physics Letters, 2015, 635, 50-55.	2.6	21
44	Structural Aspects of a Protein–Surfactant Assembly: Native and Reduced States of Human Serum Albumin. Protein Journal, 2015, 34, 147-157.	1.6	21
45	Modulated photophysics and rotational-relaxation dynamics of coumarin 153 in nonionic micelles: the role of headgroup size and tail length of the surfactants. RSC Advances, 2015, 5, 9381-9388.	3.6	21
46	Interaction of an anti-cancer photosensitizer with a genomic DNA: From base pair specificity and thermodynamic landscape to tuning the rate of detergent-sequestered dissociation. Journal of Colloid and Interface Science, 2016, 470, 211-220.	9.4	21
47	Solvation dynamics in a protein–surfactant aggregate. TNS in HSA–SDS. Chemical Physics Letters, 2003, 379, 471-478.	2.6	20
48	Triblock-Copolymer-Assisted Mixed-Micelle Formation Results in the Refolding of Unfolded Protein. Langmuir, 2018, 34, 896-903.	3.5	20
49	Investigating the micellization of the triton-X surfactants: A non-invasive fluorometric and calorimetric approach. Chemical Physics Letters, 2016, 646, 18-24.	2.6	19
50	On the role of hydrophobic interactions between chloramphenicol and bovine pancreatic trypsin: The effect of a strong electrolyte. Chemical Physics Letters, 2020, 742, 137137.	2.6	18
51	Kinetic Aspects of Enzyme-Mediated Evolution of Highly Luminescent Meta Silver Nanoclusters. Journal of Physical Chemistry C, 2015, 119, 10776-10784.	3.1	17
52	Association and sequestered dissociation of an anticancer drug from liposome membrane: Role of hydrophobic hydration. Colloids and Surfaces B: Biointerfaces, 2018, 170, 36-44.	5.0	16
53	Effects of protecting groups on luminescent metal nanoclusters: spectroscopic signatures and applications. Chemical Communications, 2021, 58, 29-47.	4.1	16
54	Contrasting effects of pH on the modulation of the structural integrity of hemoglobin induced by sodium deoxycholate. Physical Chemistry Chemical Physics, 2016, 18, 30867-30876.	2.8	15

#	Article	IF	CITATIONS
55	Exploring the Noncovalent Interactions of the Dinuclear Cu(II) Schiff Base Complex with Bovine Serum Albumin and Cell Viability against the SiHa Cancer Cell Line. Journal of Physical Chemistry B, 2021, 125, 11364-11373.	2.6	15
56	Time Evolution of Local pH Around a Photoâ€Acid in Water and a Polymer Hydrogel: Time Resolved Fluorescence Spectroscopy of Pyranine. ChemPhysChem, 2019, 20, 3221-3227.	2.1	14
57	Binding of norharmane with RNA reveals two thermodynamically different binding modes with opposing heat capacity changes. Journal of Colloid and Interface Science, 2019, 538, 587-596.	9.4	14
58	Probing Viscosity of Coâ€Polymer Hydrogel and HeLa Cell Using Fluorescent Gold Nanoclusters: Fluorescence Correlation Spectroscopy and Anisotropy Decay. ChemPhysChem, 2020, 21, 406-414.	2.1	14
59	Thermal Reversibility and Structural Stability in Lysozyme Induced by Epirubicin Hydrochloride. Langmuir, 2021, 37, 3456-3466.	3.5	14
60	Protein self-assembly induces promiscuous nucleophilic biocatalysis in Morita–Baylis–Hillman (MBH) reaction. RSC Advances, 2016, 6, 208-211.	3.6	13
61	Enhanced Luminescent Properties of Photoâ€Stable Copper Nanoclusters through Formation of "Protein oronaâ€â€Like Assemblies. ChemPhysChem, 2018, 19, 2218-2223.	2.1	12
62	Spectroscopic probing of the refolding of an unfolded protein through the formation of mixed-micelles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 216, 52-60.	3.9	11
63	Role of Small Moiety of a Large Ligand: Tyrosine Templated Copper Nanoclusters. Journal of Physical Chemistry Letters, 2021, 12, 3266-3273.	4.6	11
64	Assembly-Induced Emission in Mercaptosuccinic Acid-Templated Silver Nanoclusters: Metal Ion Selectivity and pH Sensitivity. ACS Applied Nano Materials, 2022, 5, 7571-7579.	5.0	11
65	Investigating the evolution of drug mediated silver nanoparticles. Analyst, The, 2013, 138, 4270.	3.5	10
66	An intrinsically disordered protein in F127 hydrogel: Fluorescence correlation spectroscopy and structural diversity of beta casein. Chemical Physics Letters, 2021, 762, 138105.	2.6	10
67	Structural Compactness in Hen Egg White Lysozyme Induced by Bisphenolâ€S: Aâ€Spectroscopic and Molecular Dynamics Simulation Approach. ChemPhysChem, 2021, 22, 1745-1753.	2.1	10
68	Tyrosine-Templated Dual-Component Silver Nanomaterials Exhibit Photoluminescence and Versatile Antimicrobial Properties through ROS Generation. ACS Applied Materials & Interfaces, 2021, 13, 36938-36947.	8.0	10
69	Differentiating a Least-Stable Single Nucleotide Mismatch in DNA Via Metal Ion-Mediated Base Pairing and Using Thioflavin T as an Extrinsic Fluorophore. Journal of Physical Chemistry Letters, 2021, 12, 2547-2554.	4.6	9
70	Micelles entrapped Cresyl Violet can selectively detect copper and mercury ions in solution: A fluorescence Correlation Spectroscopy investigation. Chemical Physics Letters, 2017, 682, 147-153.	2.6	8
71	Contrasting Thermodynamics Governs the Interaction of 3-Hydroxyflavone with the N-Isoform and B-Isoform of Human Serum Albumin. Langmuir, 2020, 36, 8570-8579.	3.5	8
72	Organoâ€photocatalytic Synthesis of 6â€ <i>β</i> â€Disubstituted Phenanthridines from <i>l±</i> â€Diazoâ€ <i>βâ€</i> Keto Compounds and Vinyl Azides. Asian Journal of Organic Chemistry, 2021, 10, 3328-3333.	2.7	8

#	Article	IF	CITATIONS
73	Preferential Binding of Epirubicin Hydrochloride with Single Nucleotide Mismatched DNA and Subsequent Sequestration by a Mixed Micelle. Journal of Physical Chemistry B, 2021, 125, 11660-11672.	2.6	8
74	Specific ion effects on F127 hydrogel: FCS, anisotropy and solvation dynamics. Chemical Physics Letters, 2019, 735, 136754.	2.6	7
75	Copper(II) complexes with NNN and NNO Schiff base ligands as efficient photodegradation agents for methylene blue, preferential BSA binder and biomaterial transplants. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 422, 113565.	3.9	7
76	A Bioinspired Light Harvesting System in Aqueous Medium: Highly Efficient Energy Transfer through the Self Assembly of β-Sheet Nanostructures of Poly- <scp>d</scp> -Lysine. Journal of Physical Chemistry Letters, 2022, 13, 6701-6710.	4.6	7
77	Size-controlled atomically precise copper nanoclusters: Synthetic protocols, spectroscopic properties and applications. Physical Sciences Reviews, 2018, 3, .	0.8	6
78	Rh(III)-Catalyzed C(7)–H Alkylation of Quinolines in the Synthesis of Angular π-Extended Pyrroloquinolines for Single-Component White-Light Emission. Organic Letters, 2022, 24, 2186-2191.	4.6	6
79	Solvation dynamics in a worm-like CTAB micelle. Research on Chemical Intermediates, 2005, 31, 135-144.	2.7	5
80	Revealing Linear Aggregates of Light Harvesting Antenna Proteins in Photosynthetic Membranes. Langmuir, 2010, 26, 307-313.	3.5	5
81	Weak interactive forces govern the interaction between a non-ionic surfactant with human serum albumin. Chemical Physics Letters, 2015, 634, 77-82.	2.6	5
82	Exploring the Nucleobase-Specific Hydrophobic Interaction of Cryptolepine Hydrate with RNA and Its Subsequent Sequestration. Langmuir, 2021, 37, 11176-11187.	3.5	5
83	Study of partially folded states of cytochrome C by solvation dynamics. Journal of Molecular Liquids, 2006, 124, 128-135.	4.9	3
84	Fluorescent Biotin Analogues for Microstructure Patterning and Selective Protein Immobilization. Langmuir, 2015, 31, 12573-12578.	3.5	2
85	A critical approach toward resonance-assistance in the intramolecular hydrogen bond interaction of 3,5-diiodosalicylic acid: a spectroscopic and computational investigation. Photochemical and Photobiological Sciences, 2015, 14, 1147-1162.	2.9	2
86	DNA-Templated Modulation in the Photophysical Properties of a Fluorescent Molecular Rotor Auramine O by Varying the DNA Composition. Journal of Physical Chemistry B, 2022, 126, 2658-2668.	2.6	1
87	Macrocyclic Cavitand β yclodextrin Inhibits the Alcoholâ€Induced Trypsin Aggregation. ChemPhysChem, 2022, 23, .	2.1	1