
Balaram S Takale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1571426/publications.pdf Version: 2024-02-01

RALADAM S TAKALE

#	Article	IF	CITATIONS
1	Recent Applications of Pd-Catalyzed Suzuki–Miyaura and Buchwald–Hartwig Couplings in Pharmaceutical Process Chemistry. Organics, 2022, 3, 1-21.	0.6	14
2	Environmentally Responsible and Cost-Effective Synthesis of the Antimalarial Drug Pyronaridine. Organic Letters, 2022, 24, 3342-3346.	2.4	9
3	Mild and Robust Stille Reactions in Water using Parts Per Million Levels of a Triphenylphosphineâ€Based Palladacycle. Angewandte Chemie - International Edition, 2021, 60, 4158-4163.	7.2	31
4	Mild and Robust Stille Reactions in Water using Parts Per Million Levels of a Triphenylphosphineâ€Based Palladacycle. Angewandte Chemie, 2021, 133, 4204-4209.	1.6	2
5	Lateâ€stage Pdâ€catalyzed Cyanations of Aryl/Heteroaryl Halides in Aqueous Micellar Media. ChemCatChem, 2021, 13, 212-216.	1.8	21
6	Copper-Catalyzed Asymmetric Reductions of Aryl/Heteroaryl Ketones under Mild Aqueous Micellar Conditions. Organic Letters, 2021, 23, 3282-3286.	2.4	11
7	Bisulfite Addition Compounds as Substrates for Reductive Aminations in Water. Organic Letters, 2021, 23, 7205-7208.	2.4	6
8	Sustainable routes to amines in recyclable water using ppm Pd catalysis. Current Opinion in Green and Sustainable Chemistry, 2021, 31, 100493.	3.2	6
9	High Turnover Pd/C Catalyst for Nitro Group Reductions in Water. One-Pot Sequences and Syntheses of Pharmaceutical Intermediates. Organic Letters, 2021, 23, 8114-8118.	2.4	20
10	A Sustainable 1-Pot, 3-Step Synthesis of Boscalid Using Part per Million Level Pd Catalysis in Water. Organic Process Research and Development, 2020, 24, 101-105.	1.3	33
11	Chemoselective Reductive Aminations in Aqueous Nanoreactors Using Parts per Million Level Pd/C Catalysis. Organic Letters, 2020, 22, 6324-6329.	2.4	35
12	Environmentally responsible, safe, and chemoselective catalytic hydrogenation of olefins: ppm level Pd catalysis in recyclable water at room temperature. Green Chemistry, 2020, 22, 6055-6061.	4.6	30
13	N ₂ Phos – an easily made, highly effective ligand designed for ppm level Pd-catalyzed Suzuki–Miyaura cross couplings in water. Chemical Science, 2020, 11, 5205-5212.	3.7	29
14	A sustainable approach towards the three-component synthesis of unsubstituted 1H-imidazoles in the water at ambient conditions. Journal of Asian Natural Products Research, 2020, 23, 1-5.	0.7	2
15	Sustainable and Cost-Effective Suzuki–Miyaura Couplings toward the Key Biaryl Subunits of Arylex and Rinskor Active. Organic Letters, 2020, 22, 4823-4827.	2.4	23
16	Concentrated solar radiation as a renewable heat source for a preparative-scale and solvent-free Biginelli reaction. New Journal of Chemistry, 2020, 44, 8167-8170.	1.4	22
17	Recent advances in Cu-catalyzed C(sp ³)–Si and C(sp ³)–B bond formation. Beilstein Journal of Organic Chemistry, 2020, 16, 691-737.	1.3	17
18	Earth-Abundant and Precious Metal Nanoparticle Catalysis. Topics in Organometallic Chemistry, 2020, , 77-129.	0.7	2

BALARAM S TAKALE

#	Article	IF	CITATIONS
19	A new, <i>substituted</i> palladacycle forÂppm level Pd-catalyzed Suzuki–Miyaura cross couplings in water. Chemical Science, 2019, 10, 8825-8831.	3.7	56
20	Solvent Free Synthesis of N‣ubstituted Pyrroles Catalyzed by Calcium Nitrate. Journal of Heterocyclic Chemistry, 2019, 56, 1337-1340.	1.4	9
21	<i>N</i> , <i>C</i> -Disubstituted Biarylpalladacycles as Precatalysts for ppm Pd-Catalyzed Cross Couplings in Water under Mild Conditions. ACS Catalysis, 2019, 9, 11647-11657.	5.5	42
22	An environmentally responsible 3-pot, 5-step synthesis of the antitumor agent sonidegib using ppm levels of Pd catalysis in water. Green Chemistry, 2019, 21, 6258-6262.	4.6	33
23	SustainableÂppm level palladium-catalyzed aminations in nanoreactors under mild, aqueous conditions. Chemical Science, 2019, 10, 10556-10561.	3.7	46
24	Structure of Nanoparticles Derived from Designer Surfactant TPGSâ€750â€M in Water, As Used in Organic Synthesis. Chemistry - A European Journal, 2018, 24, 6778-6786.	1.7	76
25	Dual Utility of Heterogeneous Catalyst ZSMâ€5 for C–C Cleavage Leading to Nitriles, and for the Synthesis of Hydrazides. ChemistrySelect, 2018, 3, 4168-4172.	0.7	9
26	Sustainable HandaPhos- <i>ppm</i> Palladium Technology for Copper-Free Sonogashira Couplings in Water under Mild Conditions. Organic Letters, 2018, 20, 542-545.	2.4	63
27	Transition metal free large-scale synthesis of aromatic vinyl chlorides from aromatic vinyl carboxylic acids using bleach. Tetrahedron Letters, 2018, 59, 3892-3894.	0.7	8
28	Readily switchable one-pot 5-exo-dig cyclization using a palladium catalyst. RSC Advances, 2017, 7, 2231-2235.	1.7	16
29	Highly Selective Semihydrogenation of Alkynes to Alkenes by Using an Unsupported Nanoporous Palladium Catalyst: No Leaching of Palladium into the Reaction Mixture. ACS Catalysis, 2017, 7, 8296-8303.	5.5	59
30	Preparative-scale synthesis of amino coumarins through new sequential nitration and reduction protocol. Tetrahedron Letters, 2017, 58, 4107-4110.	0.7	12
31	Unsupported Nanoporous Gold Catalyst for Chemoselective Hydrogenation Reactions under Low Pressure: Effect of Residual Silver on the Reaction. Journal of the American Chemical Society, 2016, 138, 10356-10364.	6.6	90
32	Applications of Metal Nanopore Catalysts in Organic Synthesis. Synlett, 2015, 26, 2355-2380.	1.0	21
33	Highly chemoselective reduction of imines using a AuNPore/PhMe 2 SiH/water system and its application to reductive amination. Tetrahedron, 2015, 71, 7154-7158.	1.0	22
34	Synthesis and biological evaluation of pyrrole-2-carboxamide derivatives: oroidin analogues. Medicinal Chemistry Research, 2014, 23, 1387-1396.	1.1	9
35	Gold nanoparticle (AuNPs) and gold nanopore (AuNPore) catalysts in organic synthesis. Organic and Biomolecular Chemistry, 2014, 12, 2005.	1.5	174
36	Chemoselective reduction of α,β-unsaturated aldehydes using an unsupported nanoporous gold catalyst. Chemical Communications, 2014, 50, 14401-14404.	2.2	41

BALARAM S TAKALE

#	Article	IF	CITATIONS
37	Exclusive Chemoselective Reduction of Imines in the Coexistence of Aldehydes Using AuNPore Catalyst. Organic Letters, 2014, 16, 2558-2561.	2.4	42
38	One pot synthesis of aromatic azide using sodium nitrite and hydrazine hydrate. Tetrahedron Letters, 2013, 54, 1294-1297.	0.7	25
39	Reaction of Oximes of α-Diketones with Diphosphorous Tetraiodide for Preparation of Oxadiazoles and Nitriles. Synthetic Communications, 2013, 43, 221-227.	1.1	13
40	Efficient Synthesis of Bis(4-Dimethaminophenyl)arylmethanes and Bis(4-Diamethaminophenyl)alkanes Using lodine Reagent. Synthetic Communications, 2013, 43, 1909-1914.	1.1	9
41	A novel method for bromodecarboxylation of $\hat{1}\pm,\hat{1}^2$ -unsaturated carboxylic acids using catalytic sodium nitrite. Tetrahedron Letters, 2011, 52, 2394-2396.	0.7	21
42	Selective Oxidation of Hydrazides Using <i>o</i> -lodoxybenzoic Acid to Carboxylic Acids, Esters, and Aldehydes. Chemistry Letters, 2010, 39, 546-547.	0.7	11
43	Oxidation of Dihydrazones of Diaryl α-Diketones to Diarylacetylenes Using Sodium Periodate. Chemistry Letters, 2010, 39, 1279-1280.	0.7	10
44	Carbon–carbon cleavage of aryl diamines and quinone formation using sodium periodate: a novel application. Tetrahedron Letters, 2010, 51, 3940-3943.	0.7	16
45	Simple and facile method for the preparation of vinyl azides. Tetrahedron Letters, 2009, 50, 5056-5058.	0.7	25