
H S S Ramakrishna Matte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1571375/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MoS ₂ and WS ₂ Analogues of Graphene. Angewandte Chemie - International Edition, 2010, 49, 4059-4062.	7.2	1,417
2	Hysteresis in Single-Layer MoS ₂ Field Effect Transistors. ACS Nano, 2012, 6, 5635-5641.	7.3	956
3	GaS and GaSe Ultrathin Layer Transistors. Advanced Materials, 2012, 24, 3549-3554.	11.1	580
4	Graphene Analogues of Inorganic Layered Materials. Angewandte Chemie - International Edition, 2013, 52, 13162-13185.	7.2	441
5	Rapid Characterization of Ultrathin Layers of Chalcogenides on SiO ₂ /Si Substrates. Advanced Functional Materials, 2012, 22, 1894-1905.	7.8	436
6	Layerâ€dependent resonant Raman scattering of a few layer MoS ₂ . Journal of Raman Spectroscopy, 2013, 44, 92-96.	1.2	380
7	Slip-Stacked Perylenediimides as an Alternative Strategy for High Efficiency Nonfullerene Acceptors in Organic Photovoltaics. Journal of the American Chemical Society, 2014, 136, 16345-16356.	6.6	320
8	Novel Magnetic Properties of Graphene: Presence of Both Ferromagnetic and Antiferromagnetic Features and Other Aspects. Journal of Physical Chemistry C, 2009, 113, 9982-9985.	1.5	252
9	Employing synergistic interactions between few-layer WS2 and reduced graphene oxide to improve lithium storage, cyclability and rate capability of Li-ion batteries. Nano Energy, 2013, 2, 787-793.	8.2	226
10	Recent progress in the synthesis of inorganic nanoparticles. Dalton Transactions, 2012, 41, 5089.	1.6	178
11	Ring-fusion as a perylenediimide dimer design concept for high-performance non-fullerene organic photovoltaic acceptors. Chemical Science, 2016, 7, 3543-3555.	3.7	168
12	A study of the synthetic methods and properties of graphenes. Science and Technology of Advanced Materials, 2010, 11, 054502.	2.8	164
13	Unusual magnetic properties of graphene and related materials. Chemical Science, 2012, 3, 45-52.	3.7	140
14	Quenching of fluorescence of aromatic molecules by graphene due to electron transfer. Chemical Physics Letters, 2011, 506, 260-264.	1.2	135
15	Synthesis, Characterization, and Properties of Few‣ayer MoO ₃ . Chemistry - an Asian Journal, 2013, 8, 2430-2435.	1.7	104
16	Synthesis and Selected Properties of Graphene and Graphene Mimics. Accounts of Chemical Research, 2013, 46, 149-159.	7.6	77
17	Graphene analogues of layered metal selenides. Dalton Transactions, 2011, 40, 10322.	1.6	67
18	Chargeâ€Transfer Interaction between Fewâ€Layer MoS ₂ and Tetrathiafulvalene. Chemistry - an Asian Journal, 2013, 8, 1780-1784.	1.7	61

#	Article	IF	CITATIONS
19	Role of Transition Metals in Layered Double Hydroxides for Differentiating the Oxygen Evolution and Nonenzymatic Glucose Sensing. ACS Applied Materials & Interfaces, 2020, 12, 6193-6204.	4.0	48
20	Effects of Crystalline Perylenediimide Acceptor Morphology on Optoelectronic Properties and Device Performance. Chemistry of Materials, 2016, 28, 3928-3936.	3.2	45
21	Strategies for the Synthesis of Graphene, Graphene Nanoribbons, Nanoscrolls and Related Materials. Chimia, 2012, 66, 941.	0.3	44
22	Decoration of Few-Layer Graphene-Like MoS2 and MoSe2 by Noble Metal Nanoparticles. Journal of Cluster Science, 2012, 23, 929-937.	1.7	43
23	Synthesis, Characterization, and Properties of Fewâ€layer Metal Dichalcogenides and their Nanocomposites with Noble Metal Particles, Polyaniline, and Reduced Graphene Oxide. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 2617-2624.	0.6	41
24	GRAPHENE: SYNTHESIS, FUNCTIONALIZATION AND PROPERTIES. Modern Physics Letters B, 2011, 25, 427-451.	1.0	39
25	Effect of high-temperature shock-wave compression on few-layer MoS2, WS2 and MoSe2. Chemical Physics Letters, 2013, 582, 105-109.	1.2	39
26	GRAPHENE: SYNTHESIS, FUNCTIONALIZATION AND PROPERTIES. International Journal of Modern Physics B, 2011, 25, 4107-4143.	1.0	25
27	Self-assembly of C60, SWNTs and few-layer graphene and their binary composites at the organic–aqueous interface. Journal of Colloid and Interface Science, 2011, 360, 249-255.	5.0	23
28	Highly concentrated and stabilizer-free transition-metal dichalcogenide dispersions in low-boiling point solvent for flexible electronics. Nanoscale, 2019, 11, 10746-10755.	2.8	20
29	Hydrodesulfurization of Thiophene over Few‣ayer MoS ₂ Covered with Cobalt and Nickel Nanoparticles. ChemPlusChem, 2013, 78, 419-422.	1.3	19
30	Solution-Processed Layered Hexagonal Boron Nitride Dielectrics: A Route toward Fabrication of High Performance Flexible Devices. ACS Applied Electronic Materials, 2019, 1, 2130-2139.	2.0	17
31	A covalently linked graphene-oligo(phenylenevinylene) adduct: self-organization and photo-physical properties. RSC Advances, 2012, 2, 6290.	1.7	10
32	Exfoliation in a low boiling point solvent and electrochemical applications of MoO ₃ . Beilstein Journal of Nanotechnology, 2020, 11, 662-670.	1.5	8
33	Waste to wealth: spent catalyst as an efficient and stable bifunctional oxygen electrocatalyst for zinc–air batteries. Sustainable Energy and Fuels, 2021, 5, 1406-1414.	2.5	8
34	Two―and Threeâ€Dimensional Hybrid Compounds Formed by 1,2â€, 1,3―and 1,4â€Cyclohexanedicarboxylate ZincÂÂ. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2009, 635, 1840-1847.	s of 0.6	6
35	Ordered Donor–Acceptor Complex Formation and Electron Transfer in Co-deposited Films of Structurally Dissimilar Molecules. Journal of Physical Chemistry C, 2020, 124, 11023-11031.	1.5	6
36	Inorganic–organic hybrid compounds exhibiting both magnetic order and non-linear optical properties. Solid State Communications, 2009, 149, 908-910.	0.9	5

#	Article	IF	CITATIONS
37	Graphene composites containing chemically bonded metal oxides. Bulletin of Materials Science, 2013, 36, 585-590.	0.8	5
38	Additiveâ€free Aqueous Dispersions of Twoâ€Dimensional Materials with Glial Cell Compatibility and Enzymatic Degradability. Chemistry - A European Journal, 2021, 27, 7434-7443.	1.7	5
39	Unveiling the effect of the crystalline phases of iron oxyhydroxide for highly sensitive and selective detection of dopamine. Dalton Transactions, 2021, 50, 13497-13504.	1.6	5
40	Spontaneous formation of gold nanoparticles on MoS2 nanosheets and its impact on solution-processed optoelectronic devices. IScience, 2022, 25, 104120.	1.9	5
41	Solution Processing of Topochemically Converted Layered WO 3 for Multifunctional Applications. Chemistry - A European Journal, 2021, 27, 11326-11334.	1.7	4
42	Solutionâ€Processed hâ€BN Film as an Alignment Layer for Liquid Crystal Devices: Realization of a Nonâ€Polymer Approach for Unidirectional Alignment over Unprecedentedly Large Areas. Advanced Materials Interfaces, 2022, 9, .	1.9	2
43	Graphene: Synthesis, Functionalization and Properties. , 2011, , 1-32.		1