Da-Wei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1571352/publications.pdf

Version: 2024-02-01

73 papers

3,884 citations

30 h-index 60 g-index

75 all docs

75 docs citations

75 times ranked 4686 citing authors

#	Article	IF	CITATIONS
1	Protein tyrosine nitration in atherosclerotic endothelial dysfunction. Clinica Chimica Acta, 2022, 529, 34-41.	1.1	7
2	The role of hepatic Surf4 in lipoprotein metabolism and the development of atherosclerosis in apoEâ^'/â^' mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159196.	2.4	8
3	Astragalin Retards Atherosclerosis by Promoting Cholesterol Efflux and Inhibiting the Inflammatory Response via Upregulating ABCA1 and ABCG1 Expression in Macrophages. Journal of Cardiovascular Pharmacology, 2021, 77, 217-227.	1.9	18
4	Membrane type 1 matrix metalloproteinase promotes LDL receptor shedding and accelerates the development of atherosclerosis. Nature Communications, 2021 , 12 , 1889 .	12.8	29
5	Loss of TIMP4 (Tissue Inhibitor of Metalloproteinase 4) Promotes Atherosclerotic Plaque Deposition in the Abdominal Aorta Despite Suppressed Plasma Cholesterol Levels. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1874-1889.	2.4	10
6	Atherosclerosis-associated hepatic secretion of VLDL but not PCSK9 is dependent on cargo receptor protein Surf4. Journal of Lipid Research, 2021, 62, 100091.	4.2	18
7	Membrane-type I matrix metalloproteinase (MT1-MMP), lipid metabolism, and therapeutic implications. Journal of Molecular Cell Biology, 2021, 13, 513-526.	3.3	11
8	Regulation of PCSK9 Expression and Function: Mechanisms and Therapeutic Implications. Frontiers in Cardiovascular Medicine, 2021, 8, 764038.	2.4	37
9	Loss of Hepatic Surf4 Depletes Lipid Droplets in the Adrenal Cortex but Does Not Impair Adrenal Hormone Production. Frontiers in Cardiovascular Medicine, 2021, 8, 764024.	2.4	5
10	Surf4 regulates expression of proprotein convertase subtilisin/kexin type 9 (PCSK9) but is not required for PCSK9 secretion in cultured human hepatocytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158555.	2.4	25
11	Angiopoietin-1 aggravates atherosclerosis by inhibiting cholesterol efflux and promoting inflammatory response. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158535.	2.4	21
12	Artesunate inhibits atherosclerosis by upregulating vascular smooth muscle cells-derived LPL expression via the KLF2/NRF2/TCF7L2 pathway. European Journal of Pharmacology, 2020, 884, 173408.	3.5	18
13	Interleukin-5 promotes ATP-binding cassette transporter A1 expression through miR-211/JAK2/STAT3 pathways in THP-1-dervied macrophages. Acta Biochimica Et Biophysica Sinica, 2020, 52, 832-841.	2.0	11
14	The Long Noncoding RNA Metastasis-Associated Lung Adenocarcinoma Transcript-1 Regulates CCDC80 Expression by Targeting miR-141-3p/miR-200a-3p in Vascular Smooth Muscle Cells. Journal of Cardiovascular Pharmacology, 2020, 75, 336-343.	1.9	12
15	The role of the C-terminal domain of PCSK9 and SEC24 isoforms in PCSK9 secretion. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158660.	2.4	18
16	Hydrogen Sulfide Switch Phenomenon Regulating Autophagy in Cardiovascular Diseases. Cardiovascular Drugs and Therapy, 2020, 34, 113-121.	2.6	18
17	Proprotein Convertase Subtilisin/Kexin-Type 9 and Lipid Metabolism. Advances in Experimental Medicine and Biology, 2020, 1276, 137-156.	1.6	18
18	Itaconate: an emerging determinant of inflammation in activated macrophages. Immunology and Cell Biology, 2019, 97, 134-141.	2.3	66

#	Article	IF	CITATIONS
19	CXCL12 promotes atherosclerosis by downregulating ABCA1 expression via the CXCR4/GSK3 \hat{l}^2/\hat{l}^2 -cateninT120/TCF21 pathway. Journal of Lipid Research, 2019, 60, 2020-2033.	4.2	36
20	$Kr\tilde{A}\frac{1}{4}$ ppel-like factor 14 inhibits atherosclerosis via mir-27a-mediated down-regulation of lipoprotein lipase expression in vivo. Atherosclerosis, 2019, 289, 143-161.	0.8	10
21	Pregnancy-Associated Plasma Protein-A Accelerates Atherosclerosis by Regulating Reverse Cholesterol Transport and Inflammation. Circulation Journal, 2019, 83, 515-523.	1.6	27
22	Coiled-coil domain-containing 80 accelerates atherosclerosis development through decreasing lipoprotein lipase expression via ERK1/2 phosphorylation and TET2 expression. European Journal of Pharmacology, 2019, 843, 177-189.	3.5	16
23	Identification of amino acid residues in the ligand binding repeats of LDL receptor important for PCSK9 binding. Journal of Lipid Research, 2019, 60, 516-527.	4.2	10
24	Cholesterol transport system: An integrated cholesterol transport model involved in atherosclerosis. Progress in Lipid Research, 2019, 73, 65-91.	11.6	155
25	Heat shock protein 70 accelerates atherosclerosis by downregulating the expression of ABCA1 and ABCG1 through the JNK/Elk-1 pathway. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 806-822.	2.4	45
26	Visceral adipose tissue-derived serine protease inhibitor accelerates cholesterol efflux by up-regulating ABCA1 expression via the NF-κB/miR-33a pathway in THP-1 macropahge-derived foam cells. Biochemical and Biophysical Research Communications, 2018, 500, 318-324.	2.1	22
27	Pregnancy-associated plasma protein-A in atherosclerosis: Molecular marker, mechanistic insight, and therapeutic target. Atherosclerosis, 2018, 278, 250-258.	0.8	24
28	MicroRNA-377 Inhibits Atherosclerosis by Regulating Triglyceride Metabolism Through the DNA Methyltransferase 1 in Apolipoprotein E-Knockout Mice. Circulation Journal, 2018, 82, 2861-2871.	1.6	13
29	C1q tumor necrosis factor-related protein 9 in atherosclerosis: Mechanistic insights and therapeutic potential. Atherosclerosis, 2018, 276, 109-116.	0.8	31
30	HDL impairs osteoclastogenesis and induces osteoclast apoptosis via upregulation of ABCG1 expression. Acta Biochimica Et Biophysica Sinica, 2018, 50, 853-861.	2.0	14
31	ApoA-1 Mimetic Peptide ELK-2A2K2E Decreases Inflammatory Factor Levels Through the ABCA1-JAK2-STAT3-TTP Axis in THP-1–Derived Macrophages. Journal of Cardiovascular Pharmacology, 2018, 72, 60-67.	1.9	5
32	Identification of an Amino Acid Residue Critical for Plasma Membrane Localization of ATP-Binding Cassette Transporter G1â€"Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 253-255.	2.4	18
33	Hypercholesterolemia, low density lipoprotein receptor and proprotein convertase subtilisin/kexin-type 9. Journal of Biomedical Research, 2015, 29, 356.	1.6	31
34	MMPâ€2 inhibits PCSK9â€induced degradation of the LDL receptor in Hepa1 1c7 cells. FEBS Letters, 2015, 58 490-496.	39 _, 2.8	12
35	D4F alleviates macrophage-derived foam cell apoptosis by inhibiting CD36 expression and ER stress-CHOP pathway. Journal of Lipid Research, 2015, 56, 836-847.	4.2	45
36	The effects of miR-467b on lipoprotein lipase (LPL) expression, pro-inflammatory cytokine, lipid levels and atherosclerotic lesions in apolipoprotein E knockout mice. Biochemical and Biophysical Research Communications, 2014, 443, 428-434.	2.1	32

#	Article	IF	Citations
37	MicroRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages. Atherosclerosis, 2014, 234, 54-64.	0.8	151
38	Caveolin-1 interacts with ATP binding cassette transporter G1 (ABCG1) and regulates ABCG1-mediated cholesterol efflux. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 847-858.	2.4	29
39	Apelin and its receptor APJ in cardiovascular diseases. Clinica Chimica Acta, 2014, 428, 1-8.	1.1	106
40	Lipoprotein lipase: From gene to atherosclerosis. Atherosclerosis, 2014, 237, 597-608.	0.8	89
41	MicroRNA-19b promotes macrophage cholesterol accumulation and aortic atherosclerosis by targeting ATP-binding cassette transporter A1. Atherosclerosis, 2014, 236, 215-226.	0.8	108
42	Growth differentiation factor-15 induces expression of ATP-binding cassette transporter A1 through PI3-K/PKCζ/SP1 pathway in THP-1 macrophages. Biochemical and Biophysical Research Communications, 2014, 444, 325-331.	2.1	19
43	Caveolin-1 and ATP Binding Cassette Transporter A1 and G1-Mediated Cholesterol Efflux. Cardiovascular & Hematological Disorders Drug Targets, 2014, 14, 142-148.	0.7	20
44	ATPâ€binding cassette transporters and cholesterol translocation. IUBMB Life, 2013, 65, 505-512.	3.4	66
45	MicroRNA-33 in atherosclerosis etiology and pathophysiology. Atherosclerosis, 2013, 227, 201-208.	0.8	37
46	Posttranscriptional Regulation of ATP-Binding Cassette Transporter A1in Lipid Metabolism. DNA and Cell Biology, 2013, 32, 348-358.	1.9	28
47	Apelin-13 increases expression of ATP-binding cassette transporter A1 via activating protein kinase C α signaling in THP-1 macrophage-derived foam cells. Atherosclerosis, 2013, 226, 398-407.	0.8	55
48	Characterization of palmitoylation of ATP binding cassette transporter G1: Effect on protein trafficking and function. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1067-1078.	2.4	29
49	Foam cells in atherosclerosis. Clinica Chimica Acta, 2013, 424, 245-252.	1.1	570
50	Characterization of the Role of a Highly Conserved Sequence in ATP Binding Cassette Transporter G (ABCG) Family in ABCG1 Stability, Oligomerization, and Trafficking. Biochemistry, 2013, 52, 9497-9509.	2.5	22
51	Characterization of the role of EGF-A of low density lipoprotein receptor in PCSK9 binding. Journal of Lipid Research, 2013, 54, 3345-3357.	4.2	41
52	Tertiary-Butylhydroquinone Upregulates Expression of ATP-Binding Cassette Transporter A1 via Nuclear Factor E2-Related Factor 2/Heme Oxygenase-1 Signaling in THP-1 Macrophage-Derived Foam Cells. Circulation Journal, 2013, 77, 2399-2408.	1.6	17
53	Antagonism of Betulinic Acid on LPS-Mediated Inhibition of ABCA1 and Cholesterol Efflux through Inhibiting Nuclear Factor-kappaB Signaling Pathway and miR-33 Expression. PLoS ONE, 2013, 8, e74782.	2.5	52
54	ATP-binding cassette transporters and cholesterol translocation. IUBMB Life, 2013, 65, n/a-n/a.	3.4	3

#	Article	IF	CITATIONS
55	Interleukin-18 and Interleukin-12 Together Downregulate ATP-Binding Cassette Transporter A1 Expression Through the Interleukin-18R/Nuclear Factor-κB Signaling Pathway in THP-1 Macrophage-Derived Foam Cells. Circulation Journal, 2012, 76, 1780-1791.	1.6	39
56	Identification of an amino acid residue in ATP-binding cassette transport G1 critical for mediating cholesterol efflux. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 552-559.	2.4	15
57	MicroRNA-467b targets LPL gene in RAW 264.7 macrophages and attenuates lipid accumulation and proinflammatory cytokine secretion. Biochimie, 2012, 94, 2749-2755.	2.6	47
58	Purification and Reconstitution of Sterol Transfer by Native Mouse ABCG5 and ABCG8. Biochemistry, 2008, 47, 5194-5204.	2.5	41
59	Structural requirements for PCSK9-mediated degradation of the low-density lipoprotein receptor. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13045-13050.	7.1	199
60	Binding of Proprotein Convertase Subtilisin/Kexin Type 9 to Epidermal Growth Factor-like Repeat A of Low Density Lipoprotein Receptor Decreases Receptor Recycling and Increases Degradation. Journal of Biological Chemistry, 2007, 282, 18602-18612.	3.4	660
61	Mutational analysis of polar amino acid residues within predicted transmembrane helices of Multidrug Resistance Protein 1 (ABCC1): Effect on substrate specificity. FASEB Journal, 2007, 21, A196.	0.5	1
62	MUTATIONAL ANALYSIS OF POLAR AMINO ACID RESIDUES WITHIN PREDICTED TRANSMEMBRANE HELICES 10 AND 16 OF MULTIDRUG RESISTANCE PROTEIN 1 (ABCC1): EFFECT ON SUBSTRATE SPECIFICITY. Drug Metabolism and Disposition, 2006, 34, 539-546.	3.3	24
63	Functional Asymmetry of Nucleotide-binding Domains in ABCG5 and ABCG8. Journal of Biological Chemistry, 2006, 281, 4507-4516.	3.4	44
64	Sterol Transfer by ABCG5 and ABCG8. Journal of Biological Chemistry, 2006, 281, 27894-27904.	3.4	72
65	Mutational Analysis of Ionizable Residues Proximal to the Cytoplasmic Interface of Membrane Spanning Domain 3 of the Multidrug Resistance Protein, MRP1 (ABCC1). Journal of Biological Chemistry, 2004, 279, 38871-38880.	3.4	41
66	Transmembrane Helix 11 of Multidrug Resistance Protein 1 (MRP1/ABCC1):  Identification of Polar Amino Acids Important for Substrate Specificity and Binding of ATP at Nucleotide Binding Domain 1. Biochemistry, 2004, 43, 9413-9425.	2.5	30
67	Characterization of the Role of Polar Amino Acid Residues within Predicted Transmembrane Helix 17 in Determining the Substrate Specificity of Multidrug Resistance Protein 3â€. Biochemistry, 2003, 42, 9989-10000.	2.5	33
68	MOLECULAR CLONING AND PHARMACOLOGICAL CHARACTERIZATION OF RAT MULTIDRUG RESISTANCE PROTEIN 1 (MRP1). Drug Metabolism and Disposition, 2003, 31, 1016-1026.	3.3	29
69	Functional Importance of Polar and Charged Amino Acid Residues in Transmembrane Helix 14 of Multidrug Resistance Protein 1 (MRP1/ABCC1). Journal of Biological Chemistry, 2003, 278, 46052-46063.	3.4	45
70	Photolabeling of Human and Murine Multidrug Resistance Protein 1 with the High Affinity Inhibitor [125I]LY475776 and Azidophenacyl-[35S]Glutathione. Journal of Biological Chemistry, 2002, 277, 35225-35231.	3.4	42
71	Determinants of the Substrate Specificity of Multidrug Resistance Protein 1. Journal of Biological Chemistry, 2002, 277, 20934-20941.	3.4	43
72	Identification of a Nonconserved Amino Acid Residue in Multidrug Resistance Protein 1 Important for Determining Substrate Specificity. Journal of Biological Chemistry, 2001, 276, 34966-34974.	3.4	60

#	Article	IF	CITATIONS
73	Identification of an Amino Acid Residue in Multidrug Resistance Protein 1 Critical for Conferring Resistance to Anthracyclines. Journal of Biological Chemistry, 2001, 276, 13231-13239.	3.4	80