Rosemary Hoffmann-Ribani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1571325/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Factors affecting mushroom Pleurotus spp Saudi Journal of Biological Sciences, 2019, 26, 633-646.	1.8	232
2	Stingless bee honey: Quality parameters, bioactive compounds, health-promotion properties and modification detection strategies. Trends in Food Science and Technology, 2018, 81, 37-50.	7.8	88
3	Chemical Composition and Antioxidant Activity of Yerba-Mate (<i>llex paraguariensis</i> A.StHil.,) Tj ETQq1 1 0. 59, 5523-5527.	.784314 r 2.4	gBT /Overlock 86
4	Microencapsulation of Juçara (<i>Euterpe edulis</i> M.) Pulp by Spray Drying Using Different Carriers and Drying Temperatures. Drying Technology, 2015, 33, 153-161.	1.7	83
5	Anthocyanins, Phenolic Acids and Antioxidant Properties of Juçara Fruits (Euterpe edulis M.) Along the On-tree Ripening Process. Plant Foods for Human Nutrition, 2014, 69, 142-147.	1.4	78
6	Assessment of subcritical propane, supercritical CO2 and Soxhlet extraction of oil from sapucaia (Lecythis pisonis) nuts. Journal of Supercritical Fluids, 2018, 133, 122-132.	1.6	64
7	Determination of total phenolic compounds in yerba mate (Ilex paraguariensis) combining near infrared spectroscopy (NIR) and multivariate analysis. LWT - Food Science and Technology, 2015, 60, 795-801.	2.5	62
8	Flavonols in fresh and processed Brazilian fruits. Journal of Food Composition and Analysis, 2009, 22, 263-268.	1.9	61
9	Influence of temperature, water content and type of organic acid on the formation, stability and properties of functional natural deep eutectic solvents. Fluid Phase Equilibria, 2019, 488, 40-47.	1.4	60
10	Bioactive compounds and biological properties of Brazilian stingless bee honey have a strong relationship with the pollen floral origin. Food Research International, 2019, 123, 1-10.	2.9	54
11	Eriobotrya japonica seed as a new source of starch: Assessment of phenolic compounds, antioxidant activity, thermal, rheological and morphological properties. Food Hydrocolloids, 2018, 77, 646-658.	5.6	53
12	Natural deep eutectic solvents (<scp>NADES</scp>) based on citric acid and sucrose as a potential green technology: a comprehensive study of water inclusion and its effect on thermal, physical and rheological properties. International Journal of Food Science and Technology, 2019, 54, 898-907.	1.3	44
13	Quantitative variation in Brazilian vegetable sources of flavonols and flavones. Food Chemistry, 2009, 113, 1278-1282.	4.2	40
14	Garcinia brasiliensis fruits and its by-products: Antioxidant activity, health effects and future food industry trends – A bibliometric review. Trends in Food Science and Technology, 2021, 112, 325-335.	7.8	37
15	Enhancement of the functional properties of Dioscoreaceas native starches: Mixture as a green modification process. Thermochimica Acta, 2017, 649, 31-40.	1.2	32
16	Antioxidant phytochemicals of Hovenia dulcis Thunb. peduncles in different maturity stages. Journal of Functional Foods, 2015, 18, 1117-1124.	1.6	26
17	Brazilian Dioscoreaceas starches. Journal of Thermal Analysis and Calorimetry, 2017, 127, 1869-1877.	2.0	26
18	Diseases and pests noxious to Pleurotus spp. mushroom crops. Revista Argentina De Microbiologia, 2018. 50, 216-226.	0.4	25

#	Article	IF	CITATIONS
19	Sapucaia nut (Lecythis pisonis Cambess.) flour as a new industrial ingredient: Physicochemical, thermal, and functional properties. Food Research International, 2018, 109, 572-582.	2.9	23
20	Chemical, thermal and rheological properties and stability of sapucaia (Lecythis pisonis) nut oils. Journal of Thermal Analysis and Calorimetry, 2018, 131, 2105-2121.	2.0	22
21	Flavonols and antioxidant activity of Physalis peruviana L. fruit at two maturity stages. Acta Scientiarum - Technology, 2013, 35, .	0.4	21
22	Application of multivariate calibration and NIR spectroscopy for the quantification of methylxanthines in yerba mate (Ilex paraguariensis). Journal of Food Composition and Analysis, 2014, 35, 55-60.	1.9	20
23	Determinação de compostos fenólicos por cromatografia lÃquida de alta eficiência isocrática durante estacionamento da erva-mate. Quimica Nova, 2010, 33, 119-123.	0.3	18
24	Influence of stingless bee genus (Scaptotrigona and Melipona) on the mineral content, physicochemical and microbiological properties of honey. Journal of Food Science and Technology, 2019, 56, 4742-4748.	1.4	18
25	Sequential green extractions based on supercritical carbon dioxide and pressurized ethanol for the recovery of lipids and phenolics from Pachira aquatica seeds. Journal of Cleaner Production, 2021, 306, 127223.	4.6	18
26	Sustainable Use of Ilex paraguariensis Waste in Improving Biodegradable Corn Starch Films' Mechanical, Thermal and Bioactive Properties. Journal of Polymers and the Environment, 2020, 28, 1696-1709.	2.4	16
27	Application of the NIR Method to Determine Nutrients in Yerba Mate (<i>llex paraguariensis</i> A.) Tj ETQq1 1 0.7	′84314 rgl 0.6	3T_{Overlock
28	Brazilian Amazon white yam (Dioscorea sp.) starch. Journal of Thermal Analysis and Calorimetry, 2018, 134, 2075-2088.	2.0	13
29	Valorization of an Abundant Slaughterhouse By-product as a Source of Highly Technofunctional and Antioxidant Protein Hydrolysates. Waste and Biomass Valorization, 2021, 12, 263-279.	1.8	13
30	Desenvolvimento de gelatina funcional de erva-mate. Ciencia Rural, 2011, 41, 354-360.	0.3	12
31	Novel Beverages of Yerba-Mate and Soy: Bioactive Compounds and Functional Properties. Beverages, 2018, 4, 21.	1.3	12
32	Evolution of the nutritional composition ofHovenia dulcisThunb. pseudofruit during the maturation process. Fruits, 2015, 70, 181-187.	0.3	12
33	Otimizaç£o de método para determinação de flavonóis e flavonas em frutas por cromatografia lÃquida de alta eficiência utilizando delineamento estatÂstico e an¡lise de superfÃcie de resposta. Quimica Nova, 2008, 31, 1378-1384.	0.3	11
34	The Impact of Polyoxyethylene Sorbitan Surfactants in the Microstructure and Rheological Behaviour of Emulsions Made With Melted Fat From Cupuassu (<i>Theobroma grandiflorum</i>). Journal of Surfactants and Detergents, 2016, 19, 725-738.	1.0	11
35	Subcritical propane extraction of high-quality inajá (Maximiliana maripa) pulp oil. Journal of Supercritical Fluids, 2019, 153, 104576.	1.6	11
36	Valorization of <i>Euterpe edulis</i> Mart. agroindustrial residues (pomace and seeds) as sources of unconventional starch and bioactive compounds. Journal of Food Science, 2020, 85, 96-104.	1.5	11

#	Article	IF	CITATIONS
37	Thermal, structural, morphological and bioactive characterization of acid and neutral modified loquat (Eriobotrya japonica lindl.) seed starch and its by-products. Journal of Thermal Analysis and Calorimetry, 2022, 147, 6721-6737.	2.0	11
38	Natural bioactive starch film from Amazon turmeric (Curcuma longa L.). Polymer Bulletin, 2018, 75, 4735-4752.	1.7	10
39	Bioactive potential, health benefits and application trends of Syzygium malaccense (Malay apple): A bibliometric review. Trends in Food Science and Technology, 2021, 116, 1155-1169.	7.8	10
40	Pressurized extraction of high-quality blackberry (Rubus spp. Xavante cultivar) seed oils. Journal of Supercritical Fluids, 2021, 169, 105101.	1.6	9
41	Ripe and unripe inajá (Maximilia maripa) fruit: A new high source of added value bioactive compounds. Food Chemistry, 2020, 331, 127333.	4.2	8
42	Use of image analysis for monitoring the dilution of Physalis peruviana pulp. Brazilian Archives of Biology and Technology, 2013, 56, 467-474.	0.5	7
43	Antioxidant phytochemicals of Byrsonima ligustrifolia throughout fruit developmental stages. Journal of Functional Foods, 2015, 18, 400-410.	1.6	7
44	Multivariate calibration and moisture control in yerba mate by near infrared spectroscopy. Acta Scientiarum - Technology, 2014, 36, 369.	0.4	6
45	Fatty acid profile and lipid quality of Maximiliana maripa oil obtained by supercritical CO2 and pressurized ethanol. Journal of Supercritical Fluids, 2020, 165, 104979.	1.6	6
46	A chemometric approach for moisture control in stingless bee honey using near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 2018, 26, 379-388.	0.8	5
47	Physical Properties and Rheological Behavior of Pseudofruits ofHovenia dulcisThunb. In Different Maturity Stages. Journal of Texture Studies, 2017, 48, 31-38.	1.1	4
48	Influence of Brazilian pine seed flour addition on rheological, chemical and sensory properties of gluten-free rice flour cakes. Ciencia Rural, 2018, 48, .	0.3	4
49	Valorization of the agro-industrial by-products of bacupari (Garcinia brasiliensis (Mart.)) through production of flour with bioactive properties. Food Bioscience, 2022, 45, 101343.	2.0	4
50	Nutritional and bioactive composition of achachairu (Garcinia humilis) seed flour: A potential ingredient at three stages of ripening. LWT - Food Science and Technology, 2021, 152, 112251.	2.5	4
51	Effects of environmental conditions on characteristics of annatto seed by-product. Quality Assurance and Safety of Crops and Foods, 2012, 4, e20-e28.	1.8	3
52	DEGRADAÇÃO DA COR E DO ÃCIDO ASCÓRBICO NA DESIDRATAÇÃO OSMÓTICA DE KIWI*. Boletim Centro De Pesquisa De Processamento De Alimentos, 2008, 26, .	0.2	2
53	Stability of beverages of yerba mate (<i>llex paraguariensis</i>) with soy. Nutrition and Food Science, 2015, 45, 467-478.	0.4	2
54	Chemical Properties, Rheological Behavior, and Melissopalynological Analysis of Selected Brazilian Honeys from Hovenia dulcis Flowering. Brazilian Archives of Biology and Technology, 0, 63, .	0.5	2

#	Article	IF	CITATIONS
55	Antioxidant Activity of Mat $ ilde{A}$ ${ m \bigcirc}$ Tea and Effects of Processing. , 2014, , 145-153.		1
56	Acceptability of culinary preparations based on different ground beef grades. African Journal of Pharmacy and Pharmacology, 2016, 10, 151-156.	0.2	1
57	Microwave drying and NIR spectroscopy for the rapid moisture measurement of yerba mate (<i>llex) Tj ETQq1 1 (</i>).784314 ı 1.3	rgBT /Overloo
58	Chewing gums with yerba mate and different flavors: An initial study with consumers. Journal of Food Processing and Preservation, 2021, 45, e15175.	0.9	1
59	Updates on chemistry and use of annatto (Bixa orellana L.). Revista Brasileira De Pesquisa Em Alimentos, 2015, 6, 37.	0.0	1
60	Solid-liquid Extraction of Soluble Carbohydrates from Soybean Meal: an Experimental Study, Kinetics, and Modeling. Brazilian Archives of Biology and Technology, 0, 65, .	0.5	1
61	Identification of bioactive compounds, morphology, and nutritional composition of bacupari (Garcinia brasiliensis (Mart)) pulp powder in two stages of maturation – A short communication. Food Chemistry, 2022, 391, 133279.	4.2	0