Yakindra Prasad Timilsena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1571097/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Encapsulation in the Food Industry: A Brief Historical Overview to Recent Developments. Food and Nutrition Sciences (Print), 2020, 11, 481-508.	0.2	56
2	Rheological and Microstructural Characteristics of Canola Protein Isolateâ^ Chitosan Complex Coacervates. Journal of Food Science, 2019, 84, 1104-1112.	1.5	3
3	Investigation of oil distribution in spray-dried chia seed oil microcapsules using synchrotron-FTIR microspectroscopy. Food Chemistry, 2019, 275, 457-466.	4.2	36
4	Complex coacervation: Principles, mechanisms and applications in microencapsulation. International Journal of Biological Macromolecules, 2019, 121, 1276-1286.	3.6	330
5	Lactoferrin: Structure, function, denaturation and digestion. Critical Reviews in Food Science and Nutrition, 2019, 59, 580-596.	5.4	255
6	Star Anise (Illicium verum Hook. f.) as Quorum Sensing and Biofilm Formation Inhibitor on Foodborne Bacteria: Study in Milk. Journal of Food Protection, 2017, 80, 645-653.	0.8	17
7	Drying and denaturation characteristics of three forms of bovine lactoferrin. Drying Technology, 2017, 35, 606-615.	1.7	15
8	Digestion behaviour of chia seed oil encapsulated in chia seed protein-gum complex coacervates. Food Hydrocolloids, 2017, 66, 71-81.	5.6	52
9	Advances in microencapsulation of polyunsaturated fatty acids (PUFAs)-rich plant oils using complex coacervation: A review. Food Hydrocolloids, 2017, 69, 369-381.	5.6	114
10	Physicochemical and thermal characteristics of Australian chia seed oil. Food Chemistry, 2017, 228, 394-402.	4.2	117
11	Characteristics of bovine lactoferrin powders produced through spray and freeze drying processes. International Journal of Biological Macromolecules, 2017, 95, 985-994.	3.6	41
12	Mild thermal treatment and in-vitro digestion of three forms of bovine lactoferrin: Effects on functional properties. International Dairy Journal, 2017, 64, 22-30.	1.5	42
13	Global production, processing and utilization of lentil: A review. Journal of Integrative Agriculture, 2017, 16, 2898-2913.	1.7	91
14	Food Proteins, Structure, and Function. , 2016, , .		34
15	Optimisation of the complex coacervation between canola protein isolate and chitosan. Journal of Food Engineering, 2016, 191, 58-66.	2.7	72
16	Physicochemical and functional properties of protein isolate produced from Australian chia seeds. Food Chemistry, 2016, 212, 648-656.	4.2	147
17	Microencapsulation of chia seed oil using chia seed protein isolateâ¿¿chia seed gum complex coacervates. International Journal of Biological Macromolecules, 2016, 91, 347-357.	3.6	136
18	Molecular and functional characteristics of purified gum from Australian chia seeds. Carbohydrate Polymers, 2016, 136, 128-136.	5.1	153

#	Article	IF	CITATIONS
19	Preparation and characterization of chia seed protein isolate–chia seed gum complex coacervates. Food Hydrocolloids, 2016, 52, 554-563.	5.6	157
20	Physicochemical, Thermal and Rheological Characteristics of a Novel Mucilage from Chia Seed (<i>Salvia Hispanica</i>). Special Publication - Royal Society of Chemistry, 2016, , 65-75.	0.0	3
21	Rheological and microstructural properties of the chia seed polysaccharide. International Journal of Biological Macromolecules, 2015, 81, 991-999.	3.6	80
22	Enhanced efficiency fertilisers: a review of formulation and nutrient release patterns. Journal of the Science of Food and Agriculture, 2015, 95, 1131-1142.	1.7	290
23	Effect of different pretreatments on delignification pattern and enzymatic hydrolysability of miscanthus, oil palm biomass and typha grass. Bioresource Technology, 2013, 135, 82-88.	4.8	43
24	Impact of the lignin structure of three lignocellulosic feedstocks on their organosolv delignification. Effect ofÂcarbonium ion scavengers. Biomass and Bioenergy, 2013, 52, 151-158.	2.9	24
25	Rapid Optimization of Typha Grass Organosolv Pretreatments Using Parallel Microwave Reactors for Ethanol Production. Industrial & Engineering Chemistry Research, 2013, 52, 1691-1697.	1.8	9
26	Acrylamide: Thermally Induced Toxicant in Foods and Its Control Measures. Journal of Food Science and Technology Nepal, 2013, 6, 19-30.	0.2	3