Lawrence L Wald

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1570777/lawrence-l-wald-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

16,711 116 322 70 h-index g-index citations papers 6.66 20,106 5.2 353 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
322	Comprehensive diffusion MRI dataset for in vivo human brain microstructure mapping using 300 mT/m gradients <i>Scientific Data</i> , 2022 , 9, 7	8.2	1
321	3D Echo Planar Time-resolved Imaging (3D-EPTI) for ultrafast multi-parametric quantitative MRI <i>NeuroImage</i> , 2022 , 250, 118963	7.9	3
320	A 31-channel integrated "AC/DC" B shim and radiofrequency receive array coil for improved 7T MRI. <i>Magnetic Resonance in Medicine</i> , 2022 , 87, 1074-1092	4.4	1
319	Scout accelerated motion estimation and reduction (SAMER). <i>Magnetic Resonance in Medicine</i> , 2022 , 87, 163-178	4.4	1
318	A Huygens Gurface approach to rapid characterization of peripheral nerve stimulation. <i>Magnetic Resonance in Medicine</i> , 2022 , 87, 377-393	4.4	2
317	External Dynamic InTerference Estimation and Removal (EDITER) for low field MRI. <i>Magnetic Resonance in Medicine</i> , 2022 , 87, 614-628	4.4	1
316	Mapping the Human Connectome using Diffusion MRI at 300 mT/m Gradient Strength: Methodological Advances and Scientific Impact <i>NeuroImage</i> , 2022 , 118958	7.9	1
315	Portable Brain Scanner Technology for Use in Emergency Medicine 2022 , 49-74		
314	Disruption of Brainstem Structural Connectivity in REM Sleep Behavior Disorder Using 7 Tesla Magnetic Resonance Imaging <i>Movement Disorders</i> , 2021 ,	7	4
313	Simultaneous pure T and varying TOweighted BOLD fMRI using Echo Planar Time-resolved Imaging for mapping cortical-depth dependent responses. <i>NeuroImage</i> , 2021 , 245, 118641	7.9	2
312	Distortion-free, high-isotropic-resolution diffusion MRI with gSlider BUDA-EPI and multicoil dynamic B shimming. <i>Magnetic Resonance in Medicine</i> , 2021 , 86, 791-803	4.4	6
311	In vivo human whole-brain Connectom diffusion MRI dataset at 760 μm isotropic resolution. <i>Scientific Data</i> , 2021 , 8, 122	8.2	8
310	A size-adaptive 32-channel array coil for awake infant neuroimaging at 3 Tesla MRI. <i>Magnetic Resonance in Medicine</i> , 2021 , 86, 1773-1785	4.4	2
309	Location of Subcortical Microbleeds and Recovery of Consciousness After Severe Traumatic Brain Injury. <i>Neurology</i> , 2021 , 97, e113-e123	6.5	3
308	Optimized 64-channel array configurations for accelerated simultaneous multislice acquisitions in 3T cardiac MRI. <i>Magnetic Resonance in Medicine</i> , 2021 , 86, 2276-2289	4.4	2
307	Concept for using magnetic particle imaging for intraoperative margin analysis in breast-conserving surgery. <i>Scientific Reports</i> , 2021 , 11, 13456	4.9	5
306	Low-field portable brain MRI in CNS demyelinating disease. <i>Multiple Sclerosis and Related Disorders</i> , 2021 , 51, 102903	4	3

(2020-2021)

305	Safety and imaging performance of two-channel RF shimming for fetal MRI at 3T. <i>Magnetic Resonance in Medicine</i> , 2021 , 86, 2810-2821	4.4	О	
304	Individualized SAR calculations using computer vision-based MR segmentation and a fast electromagnetic solver. <i>Magnetic Resonance in Medicine</i> , 2021 , 85, 429-443	4.4	8	
303	A portable scanner for magnetic resonance imaging of the brain. <i>Nature Biomedical Engineering</i> , 2021 , 5, 229-239	19	29	
302	Investigating cardiac stimulation limits of MRI gradient coils using electromagnetic and electrophysiological simulations in human and canine body models. <i>Magnetic Resonance in Medicine</i> , 2021, 85, 1047-1061	4.4	3	
301	Optimization of MRI Gradient Coils With Explicit Peripheral Nerve Stimulation Constraints. <i>IEEE Transactions on Medical Imaging</i> , 2021 , 40, 129-142	11.7	12	
300	The Path to Parent-Inclusive Conferences. <i>Journal of the American College of Radiology</i> , 2021 , 18, 334-3	3 36 .5		
299	Rapid head-pose detection for automated slice prescription of fetal-brain MRI. <i>International Journal of Imaging Systems and Technology</i> , 2021 , 31, 1136-1154	2.5	3	
298	A 128-channel head coil array for cortical imaging at 7 Tesla 2021 ,		1	
297	A 48-channel receive array coil for mesoscopic diffusion-weighted MRI of ex´vivo human brain on the 3 T connectome scanner. <i>NeuroImage</i> , 2021 , 238, 118256	7.9	5	
296	Safety and image quality at 7T MRI for deep brain stimulation systems: Ex vivo study with lead-only and full-systems. <i>PLoS ONE</i> , 2021 , 16, e0257077	3.7	3	
295	Quantitative T and T mapping by magnetic resonance fingerprinting (MRF) of the placenta before and after maternal hyperoxia. <i>Placenta</i> , 2021 , 114, 124-132	3.4	1	
294	Connectome 2.0: Developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome. <i>NeuroImage</i> , 2021 , 243, 118530	7.9	6	
293	Evaluation of RF interactions between a 3T birdcage transmit coil and transcranial magnetic stimulation coils using a realistically shaped head phantom. <i>Magnetic Resonance in Medicine</i> , 2020 , 84, 1061-1075	4.4	8	
292	Placental MRI: Effect of maternal position and uterine contractions on placental BOLD MRI measurements. <i>Placenta</i> , 2020 , 95, 69-77	3.4	16	
291	Individual variation in simulated fetal SAR assessed in multiple body models. <i>Magnetic Resonance in Medicine</i> , 2020 , 83, 1418-1428	4.4	8	
290	An orthogonal shim coil for 3T brain imaging. <i>Magnetic Resonance in Medicine</i> , 2020 , 83, 1499-1511	4.4	5	
289	Optimizing selective stimulation of peripheral nerves with arrays of coils or surface electrodes using a linear peripheral nerve stimulation metric. <i>Journal of Neural Engineering</i> , 2020 , 17, 016029	5	8	
288	A 16-channel AC/DC array coil for anesthetized monkey whole-brain imaging at 7T. <i>NeuroImage</i> , 2020 , 207, 116396	7.9	12	

287	Axon diameter index estimation independent of fiber orientation distribution using high-gradient diffusion MRI. <i>Neurolmage</i> , 2020 , 222, 117197	7.9	20
286	An integrated RF-receive/B-shim array coil boosts performance of whole-brain MR spectroscopic imaging at 7 T. <i>Scientific Reports</i> , 2020 , 10, 15029	4.9	4
285	Further Development of Subspace Imaging to Magnetic Resonance Fingerprinting: A Low-rank Tensor Approach. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference, 2020,	0.9	O
284	2020, 1662-1666 High-gradient diffusion MRI reveals distinct estimates of axon diameter index within different white matter tracts in the in vivo human brain. <i>Brain Structure and Function</i> , 2020 , 225, 1277-1291	4	24
283	Low-cost and portable MRI. Journal of Magnetic Resonance Imaging, 2020, 52, 686-696	5.6	40
282	Design and implementation of a low-cost, tabletop MRI scanner for education and research prototyping. <i>Journal of Magnetic Resonance</i> , 2020 , 310, 106625	3	7
281	Parallel transmission to reduce absorbed power around deep brain stimulation devices in MRI: Impact of number and arrangement of transmit channels. <i>Magnetic Resonance in Medicine</i> , 2020 , 83, 29	9 ⁴ 3 ⁴ 1	14
280	High-fidelity, high-isotropic-resolution diffusion imaging through gSlider acquisition with and T corrections and integrated $\bf B$ /Rx shim array. <i>Magnetic Resonance in Medicine</i> , 2020 , 83, 56-67	4.4	20
279	7 Tesla MRI of the ex vivo human brain at 100 micron resolution. <i>Scientific Data</i> , 2019 , 6, 244	8.2	82
278	Probabilistic Structural Atlas of the Inferior and Superior Colliculi, Medial and Lateral Geniculate Nuclei and Superior Olivary Complex in Humans Based on 7 Tesla MRI. <i>Frontiers in Neuroscience</i> , 2019 , 13, 764	5.1	11
277	Intracortical smoothing of small-voxel fMRI data can provide increased detection power without spatial resolution losses compared to conventional large-voxel fMRI data. <i>NeuroImage</i> , 2019 , 189, 601-6	574 ⁹	16
276	Echo planar time-resolved imaging (EPTI). Magnetic Resonance in Medicine, 2019, 81, 3599-3615	4.4	30
275	The MR Cap: A single-sided MRI system designed for potential point-of-care limited field-of-view brain imaging. <i>Magnetic Resonance in Medicine</i> , 2019 , 82, 1946-1960	4.4	26
274	Corpus callosum axon diameter relates to cognitive impairment in multiple sclerosis. <i>Annals of Clinical and Translational Neurology</i> , 2019 , 6, 882-892	5.3	21
273	Functional Involvement of Human Periaqueductal Gray and Other Midbrain Nuclei in Cognitive Control. <i>Journal of Neuroscience</i> , 2019 , 39, 6180-6189	6.6	10
272	Highly accelerated multishot echo planar imaging through synergistic machine learning and joint reconstruction. <i>Magnetic Resonance in Medicine</i> , 2019 , 82, 1343-1358	4.4	17
271	Representational similarity precedes category selectivity in the developing ventral visual pathway. <i>NeuroImage</i> , 2019 , 197, 565-574	7.9	12
270	Reconfigurable MRI technology for low-SAR imaging of deep brain stimulation at 3T: Application in bilateral leads, fully-implanted systems, and surgically modified lead trajectories. <i>NeuroImage</i> , 2019 , 199, 18-29	7.9	24

(2019-2019)

269	Network Accelerated Motion Estimation and Reduction (NAMER): Convolutional neural network guided retrospective motion correction using a separable motion model. <i>Magnetic Resonance in Medicine</i> , 2019 , 82, 1452-1461	4.4	34
268	Dependence of resting-state fMRI fluctuation amplitudes on cerebral cortical orientation relative to the direction of B0 and anatomical axes. <i>NeuroImage</i> , 2019 , 196, 337-350	7.9	13
267	Phase-matched virtual coil reconstruction for highly accelerated diffusion echo-planar imaging. <i>NeuroImage</i> , 2019 , 194, 291-302	7.9	14
266	Comparison between 8- and 32-channel phased-array receive coils for in vivo hyperpolarized C imaging of the human brain. <i>Magnetic Resonance in Medicine</i> , 2019 , 82, 833-841	4.4	17
265	Highly-accelerated volumetric brain examination using optimized wave-CAIPI encoding. <i>Journal of Magnetic Resonance Imaging</i> , 2019 , 50, 961-974	5.6	21
264	Changes in the specific absorption rate (SAR) of radiofrequency energy in patients with retained cardiac leads during MRI at 1.5T and 3T. <i>Magnetic Resonance in Medicine</i> , 2019 , 81, 653-669	4.4	20
263	Prediction of peripheral nerve stimulation thresholds of MRI gradient coils using coupled electromagnetic and neurodynamic simulations. <i>Magnetic Resonance in Medicine</i> , 2019 , 81, 686-701	4.4	30
262	Computer-Vision Techniques for Water-Fat Separation in Ultra High-Field MRI Local Specific Absorption Rate Estimation. <i>IEEE Transactions on Biomedical Engineering</i> , 2019 , 66, 768-774	5	2
261	Reconfigurable MRI coil technology can substantially reduce RF heating of deep brain stimulation implants: First in-vitro study of RF heating reduction in bilateral DBS leads at 1.5 T. <i>PLoS ONE</i> , 2019 , 14, e0220043	3.7	22
260	Ultimate MRI. Journal of Magnetic Resonance, 2019 , 306, 139-144	3	9
260 259	Ultimate MRI. <i>Journal of Magnetic Resonance</i> , 2019 , 306, 139-144 Age-related alterations in axonal microstructure in the corpus callosum measured by high-gradient diffusion MRI. <i>NeuroImage</i> , 2019 , 191, 325-336	3 7.9	9
	Age-related alterations in axonal microstructure in the corpus callosum measured by high-gradient		
259	Age-related alterations in axonal microstructure in the corpus callosum measured by high-gradient diffusion MRI. <i>NeuroImage</i> , 2019 , 191, 325-336 Imaging G-Ratio in Multiple Sclerosis Using High-Gradient Diffusion MRI and Macromolecular Tissue	7.9	30
259 258	Age-related alterations in axonal microstructure in the corpus callosum measured by high-gradient diffusion MRI. <i>NeuroImage</i> , 2019 , 191, 325-336 Imaging G-Ratio in Multiple Sclerosis Using High-Gradient Diffusion MRI and Macromolecular Tissue Volume. <i>American Journal of Neuroradiology</i> , 2019 , 40, 1871-1877 Placental MRI: Developing Accurate Quantitative Measures of Oxygenation. <i>Topics in Magnetic</i>	7·9 4·4	30
259258257	Age-related alterations in axonal microstructure in the corpus callosum measured by high-gradient diffusion MRI. <i>NeuroImage</i> , 2019 , 191, 325-336 Imaging G-Ratio in Multiple Sclerosis Using High-Gradient Diffusion MRI and Macromolecular Tissue Volume. <i>American Journal of Neuroradiology</i> , 2019 , 40, 1871-1877 Placental MRI: Developing Accurate Quantitative Measures of Oxygenation. <i>Topics in Magnetic Resonance Imaging</i> , 2019 , 28, 285-297 Tilted-CAIPI for highly accelerated distortion-free EPI with point spread function (PSF) encoding.	7.9 4.4 2.3	30 21 9
259258257256	Age-related alterations in axonal microstructure in the corpus callosum measured by high-gradient diffusion MRI. <i>NeuroImage</i> , 2019 , 191, 325-336 Imaging G-Ratio in Multiple Sclerosis Using High-Gradient Diffusion MRI and Macromolecular Tissue Volume. <i>American Journal of Neuroradiology</i> , 2019 , 40, 1871-1877 Placental MRI: Developing Accurate Quantitative Measures of Oxygenation. <i>Topics in Magnetic Resonance Imaging</i> , 2019 , 28, 285-297 Tilted-CAIPI for highly accelerated distortion-free EPI with point spread function (PSF) encoding. <i>Magnetic Resonance in Medicine</i> , 2019 , 81, 377-392 Reducing RF-induced Heating near Implanted Leads through High-Dielectric Capacitive Bleeding of	7.9 4.4 2.3	30 21 9
259 258 257 256 255	Age-related alterations in axonal microstructure in the corpus callosum measured by high-gradient diffusion MRI. NeuroImage, 2019, 191, 325-336 Imaging G-Ratio in Multiple Sclerosis Using High-Gradient Diffusion MRI and Macromolecular Tissue Volume. American Journal of Neuroradiology, 2019, 40, 1871-1877 Placental MRI: Developing Accurate Quantitative Measures of Oxygenation. Topics in Magnetic Resonance Imaging, 2019, 28, 285-297 Tilted-CAIPI for highly accelerated distortion-free EPI with point spread function (PSF) encoding. Magnetic Resonance in Medicine, 2019, 81, 377-392 Reducing RF-induced Heating near Implanted Leads through High-Dielectric Capacitive Bleeding of Current (CBLOC). IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 1265-1273	7.9 4.4 2.3 4.4 4.1	30 21 9 23 26

251	RF-induced heating in tissue near bilateral DBS implants during MRI at 1.5 T and 3T: The role of surgical lead management. <i>NeuroImage</i> , 2019 , 184, 566-576	7.9	48	
250	Oxytocin attenuates trust as a subset of more general reinforcement learning, with altered reward circuit functional connectivity in males. <i>NeuroImage</i> , 2018 , 174, 35-43	7.9	20	
249	Motion-robust sub-millimeter isotropic diffusion imaging through motion corrected generalized slice dithered enhanced resolution (MC-gSlider) acquisition. <i>Magnetic Resonance in Medicine</i> , 2018 , 80, 1891-1906	4.4	18	
248	Realistic modeling of deep brain stimulation implants for electromagnetic MRI safety studies. <i>Physics in Medicine and Biology</i> , 2018 , 63, 095015	3.8	19	
247	Validation of diffusion MRI estimates of compartment size and volume fraction in a biomimetic brain phantom using a human MRI scanner with 300 mT/m maximum gradient strength. Neurolmage, 2018, 182, 469-478	7.9	32	
246	Multimodal Characterization of the Late Effects of Traumatic Brain Injury: A Methodological Overview of the Late Effects of Traumatic Brain Injury Project. <i>Journal of Neurotrauma</i> , 2018 , 35, 1604-	1849	23	
245	Improving parallel imaging by jointly reconstructing multi-contrast data. <i>Magnetic Resonance in Medicine</i> , 2018 , 80, 619-632	4.4	38	
244	TArgeted Motion Estimation and Reduction (TAMER): Data Consistency Based Motion Mitigation for MRI Using a Reduced Model Joint Optimization. <i>IEEE Transactions on Medical Imaging</i> , 2018 , 37, 125	3 ¹ 126!	5 ³⁰	
243	Computation of ultimate SAR amplification factors for radiofrequency hyperthermia in non-uniform body models: impact of frequency and tumour location. <i>International Journal of Hyperthermia</i> , 2018 , 34, 87-100	3.7	19	
242	Improved magnetic resonance fingerprinting reconstruction with low-rank and subspace modeling. <i>Magnetic Resonance in Medicine</i> , 2018 , 79, 933-942	4.4	71	
241	A probabilistic template of human mesopontine tegmental nuclei from in vivo 7T MRI. <i>NeuroImage</i> , 2018 , 170, 222-230	7.9	21	
240	Wave-CAIPI for highly accelerated MP-RAGE imaging. <i>Magnetic Resonance in Medicine</i> , 2018 , 79, 401-40	64.4	29	
239	High-resolution in vivo diffusion imaging of the human brain with generalized slice dithered enhanced resolution: Simultaneous multislice (gSlider-SMS). <i>Magnetic Resonance in Medicine</i> , 2018 , 79, 141-151	4.4	87	
238	In vivo B field shimming methods for MRI at 7T. NeuroImage, 2018, 168, 71-87	7.9	59	
237	Design of sparse Halbach magnet arrays for portable MRI using a genetic algorithm. <i>IEEE Transactions on Magnetics</i> , 2018 , 54,	2	50	
236	Rodent Cerebral Blood Volume (CBV) changes during hypercapnia observed using Magnetic Particle Imaging (MPI) detection. <i>NeuroImage</i> , 2018 , 178, 713-720	7.9	28	
235	A comprehensive diffusion MRI dataset acquired on the MGH Connectome scanner in a biomimetic brain phantom. <i>Data in Brief</i> , 2018 , 18, 334-339	1.2	2	
234	Comparision of new element designs for combined RF-Shim arrays at 7 T 2018 , 48B,		1	

233	Sensitivity analysis of neurodynamic and electromagnetic simulation parameters for robust prediction of peripheral nerve stimulation. <i>Physics in Medicine and Biology</i> , 2018 , 64, 015005	3.8	4
232	Simulations of a birdcage coil B+ field on a human body model for designing a 3T multichannel TMS/MRI head coil array. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference,	0.9	3
231	Magnetic Resonance Imaging technology-bridging the gap between noninvasive human imaging and optical microscopy. <i>Current Opinion in Neurobiology</i> , 2018 , 50, 250-260	7.6	13
230	Feasibility of using linearly polarized rotating birdcage transmitters and close-fitting receive arrays in MRI to reduce SAR in the vicinity of deep brain simulation implants. <i>Magnetic Resonance in Medicine</i> , 2017 , 77, 1701-1712	4.4	43
229	Single-step quantitative susceptibility mapping with variational penalties. <i>NMR in Biomedicine</i> , 2017 , 30, e3570	4.4	35
228	Simultaneous multislice magnetic resonance fingerprinting (SMS-MRF) with direct-spiral slice-GRAPPA (ds-SG) reconstruction. <i>Magnetic Resonance in Medicine</i> , 2017 , 77, 1966-1974	4.4	28
227	Organization of high-level visual cortex in human infants. <i>Nature Communications</i> , 2017 , 8, 13995	17.4	147
226	High b-value and high Resolution Integrated Diffusion (HIBRID) imaging. <i>NeuroImage</i> , 2017 , 150, 162-1	7 6 .9	21
225	Simultaneous Time Interleaved MultiSlice (STIMS) for Rapid Susceptibility Weighted acquisition. <i>NeuroImage</i> , 2017 , 155, 577-586	7.9	17
224	Improved 7 Tesla resting-state fMRI connectivity measurements by cluster-based modeling of respiratory volume and heart rate effects. <i>NeuroImage</i> , 2017 , 153, 262-272	7.9	11
223	The ultimate signal-to-noise ratio in realistic body models. <i>Magnetic Resonance in Medicine</i> , 2017 , 78, 1969-1980	4.4	42
222	Diffusion MRI microstructure models with in vivo human brain Connectome data: results from a multi-group comparison. <i>NMR in Biomedicine</i> , 2017 , 30, e3734	4.4	26
221	Reduction of across-run variability of temporal SNR in accelerated EPI time-series data through FLEET-based robust autocalibration. <i>NeuroImage</i> , 2017 , 152, 348-359	7.9	8
220	Use of pattern recognition for unaliasing simultaneously acquired slices in simultaneous multislice MR fingerprinting. <i>Magnetic Resonance in Medicine</i> , 2017 , 78, 1870-1876	4.4	20
219	Impacting the effect of fMRI noise through hardware and acquisition choices - Implications for controlling false positive rates. <i>NeuroImage</i> , 2017 , 154, 15-22	7.9	23
218	Construction and modeling of a reconfigurable MRI coil for lowering SAR in patients with deep brain stimulation implants. <i>NeuroImage</i> , 2017 , 147, 577-588	7.9	40
217	3D MR fingerprinting with accelerated stack-of-spirals and hybrid sliding-window and GRAPPA reconstruction. <i>NeuroImage</i> , 2017 , 162, 13-22	7.9	60
216	Predicting Magnetostimulation Thresholds in the Peripheral Nervous System using Realistic Body Models. <i>Scientific Reports</i> , 2017 , 7, 5316	4.9	33

215	Local SAR near deep brain stimulation (DBS) electrodes at 64 and 127 MHz: A simulation study of the effect of extracranial loops. <i>Magnetic Resonance in Medicine</i> , 2017 , 78, 1558-1565	4.4	42
214	Autocalibrated wave-CAIPI reconstruction; Joint optimization of k-space trajectory and parallel imaging reconstruction. <i>Magnetic Resonance in Medicine</i> , 2017 , 78, 1093-1099	4.4	37
213	g-Ratio weighted imaging of the human spinal cord in vivo. <i>NeuroImage</i> , 2017 , 145, 11-23	7.9	54
212	Simultaneous multislice magnetic resonance fingerprinting with low-rank and subspace modeling. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference, 2017 , 2017, 3264-3268	0.9	3
211	Design analysis of an MPI human functional brain scanner 2017 , 3,		19
2 10	MGH-USC Human Connectome Project datasets with ultra-high b-value diffusion MRI. <i>NeuroImage</i> , 2016 , 124, 1108-1114	7.9	144
209	Rapid multi-orientation quantitative susceptibility mapping. <i>NeuroImage</i> , 2016 , 125, 1131-1141	7.9	38
208	Physiological noise model comparison for resting-state fMRI at 7 T 2016 ,		1
207	Optimal experiment design for magnetic resonance fingerprinting. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2016 , 2016, 453-456	0.9	12
206	Automatic cortical surface reconstruction of high-resolution T1 echo planar imaging data. <i>NeuroImage</i> , 2016 , 134, 338-354	7.9	43
205	Fast Electromagnetic Analysis of MRI Transmit RF Coils Based on Accelerated Integral Equation Methods. <i>IEEE Transactions on Biomedical Engineering</i> , 2016 , 63, 2250-2261	5	24
204	Maximum Likelihood Reconstruction for Magnetic Resonance Fingerprinting. <i>IEEE Transactions on Medical Imaging</i> , 2016 , 35, 1812-23	11.7	75
203	Characterization of Axonal Disease in Patients with Multiple Sclerosis Using High-Gradient-Diffusion MR Imaging. <i>Radiology</i> , 2016 , 280, 244-51	20.5	28
202	Variability and anatomical specificity of the orbitofrontothalamic fibers of passage in the ventral capsule/ventral striatum (VC/VS): precision care for patient-specific tractography-guided targeting of deep brain stimulation (DBS) in obsessive compulsive disorder (OCD). <i>Brain Imaging and Behavior</i>	4.1	91
201	Signal Fluctuation Sensitivity: An Improved Metric for Optimizing Detection of Resting-State fMRI Networks. <i>Frontiers in Neuroscience</i> , 2016 , 10, 180	5.1	15
200	Accelerating magnetic resonance fingerprinting (MRF) using t-blipped simultaneous multislice (SMS) acquisition. <i>Magnetic Resonance in Medicine</i> , 2016 , 75, 2078-85	4.4	38
199	General design approach and practical realization of decoupling matrices for parallel transmission coils. <i>Magnetic Resonance in Medicine</i> , 2016 , 76, 329-39	4.4	5
198	Fast three-dimensional inner volume excitations using parallel transmission and optimized k-space trajectories. <i>Magnetic Resonance in Medicine</i> , 2016 , 76, 1170-82	4.4	11

(2015-2016)

197	Coil-to-coil physiological noise correlations and their impact on functional MRI time-series signal-to-noise ratio. <i>Magnetic Resonance in Medicine</i> , 2016 , 76, 1708-1719	4.4	17
196	Multi-atlas and label fusion approach for patient-specific MRI based skull estimation. <i>Magnetic Resonance in Medicine</i> , 2016 , 75, 1797-807	4.4	15
195	Robust time-shifted spoke pulse design in the presence of large B0 variations with simultaneous reduction of through-plane dephasing, B1+ effects, and the specific absorption rate using parallel transmission. <i>Magnetic Resonance in Medicine</i> , 2016 , 76, 540-54	4.4	13
194	Parallel transmission pulse design with explicit control for the specific absorption rate in the presence of radiofrequency errors. <i>Magnetic Resonance in Medicine</i> , 2016 , 75, 2493-504	4.4	8
193	Toward 20 T magnetic resonance for human brain studies: opportunities for discovery and neuroscience rationale. <i>Magnetic Resonance Materials in Physics, Biology, and Medicine</i> , 2016 , 29, 617-39	2.8	46
192	The pulsatility volume index: an indicator of cerebrovascular compliance based on fast magnetic resonance imaging of cardiac and respiratory pulsatility. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2016 , 374,	3	12
191	Globally conditioned Granger causality in brain-brain and brain-heart interactions: a combined heart rate variability/ultra-high-field (7 T) functional magnetic resonance imaging study. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2016 , 374,	3	32
190	Neuroimaging brainstem circuitry supporting cardiovagal response to pain: a combined heart rate variability/ultrahigh-field (7 T) functional magnetic resonance imaging study. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2016 , 374,	3	27
189	In vivo functional connectome of human brainstem nuclei of the ascending arousal, autonomic, and motor systems by high spatial resolution 7-Tesla fMRI. <i>Magnetic Resonance Materials in Physics, Biology, and Medicine</i> , 2016 , 29, 451-62	2.8	33
188	Transmit Array Spatial Encoding (TRASE) using broadband WURST pulses for RF spatial encoding in inhomogeneous B0 fields. <i>Journal of Magnetic Resonance</i> , 2016 , 268, 36-48	3	17
187	Efficacy and Safety of Pedunculopontine Nuclei (PPN) Deep Brain Stimulation in the Treatment of Gait Disorders: A Meta-Analysis of Clinical Studies. <i>Canadian Journal of Neurological Sciences</i> , 2016 , 43, 120-6	1	28
186	Selective magnetic resonance imaging of magnetic nanoparticles by acoustically induced rotary saturation. <i>Magnetic Resonance in Medicine</i> , 2016 , 75, 97-106	4.4	6
185	A 32-channel combined RF and B0 shim array for 3T brain imaging. <i>Magnetic Resonance in Medicine</i> , 2016 , 75, 441-51	4.4	77
184	Reducing sensitivity losses due to respiration and motion in accelerated echo planar imaging by reordering the autocalibration data acquisition. <i>Magnetic Resonance in Medicine</i> , 2016 , 75, 665-79	4.4	83
183	Dense, shape-optimized posterior 32-channel coil for submillimeter functional imaging of visual cortex at 3T. <i>Magnetic Resonance in Medicine</i> , 2016 , 76, 321-8	4.4	8
182	RARE/turbo spin echo imaging with Simultaneous Multislice Wave-CAIPI. <i>Magnetic Resonance in Medicine</i> , 2015 , 73, 929-938	4.4	51
181	In vivo mapping of human spinal cord microstructure at 300mT/m. NeuroImage, 2015, 118, 494-507	7.9	54
180	Real diffusion-weighted MRI enabling true signal averaging and increased diffusion contrast. <i>NeuroImage</i> , 2015 , 122, 373-84	7.9	67

179	Toward an In Vivo Neuroimaging Template of Human Brainstem Nuclei of the Ascending Arousal, Autonomic, and Motor Systems. <i>Brain Connectivity</i> , 2015 , 5, 597-607	2.7	39
178	A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. <i>Neurolmage</i> , 2015 , 115, 117-37	7.9	566
177	The impact of gradient strength on in vivo diffusion MRI estimates of axon diameter. <i>NeuroImage</i> , 2015 , 106, 464-72	7.9	79
176	White matter compartment models for in vivo diffusion MRI at 300mT/m. <i>NeuroImage</i> , 2015 , 118, 468-8	3 7.9	47
175	Parallel transmit pulse design for patients with deep brain stimulation implants. <i>Magnetic Resonance in Medicine</i> , 2015 , 73, 1896-903	4.4	45
174	An anatomically realistic temperature phantom for radiofrequency heating measurements. <i>Magnetic Resonance in Medicine</i> , 2015 , 73, 442-50	4.4	33
173	Two-dimensional imaging in a lightweight portable MRI scanner without gradient coils. <i>Magnetic Resonance in Medicine</i> , 2015 , 73, 872-83	4.4	86
172	Fast reconstruction for multichannel compressed sensing using a hierarchically semiseparable solver. <i>Magnetic Resonance in Medicine</i> , 2015 , 73, 1034-40	4.4	13
171	SAR reduction in 7T C-spine imaging using a "dark modes" transmit array strategy. <i>Magnetic Resonance in Medicine</i> , 2015 , 73, 1533-9	4.4	22
170	Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures. <i>Scientific Data</i> , 2015 , 2, 150031	8.2	204
169	Design of parallel transmission pulses for simultaneous multislice with explicit control for peak power and local specific absorption rate. <i>Magnetic Resonance in Medicine</i> , 2015 , 73, 1946-53	4.4	43
168	A 31-channel MR brain array coil compatible with positron emission tomography. <i>Magnetic Resonance in Medicine</i> , 2015 , 73, 2363-75	4.4	32
167	Wave-CAIPI for highly accelerated 3D imaging. <i>Magnetic Resonance in Medicine</i> , 2015 , 73, 2152-62	4.4	120
166	Globally conditioned causality in estimating directed brain-heart interactions through joint MRI and RR series analysis. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2015 ,	0.9	
165	Fast group matching for MR fingerprinting reconstruction. <i>Magnetic Resonance in Medicine</i> , 2015 , 74, 523-8	4.4	71
164	Comparison of simulated parallel transmit body arrays at 3 T using excitation uniformity, global SAR, local SAR, and power efficiency metrics. <i>Magnetic Resonance in Medicine</i> , 2015 , 73, 1137-50	4.4	50
163	Field Strength Dependence of Contrast and Noise in fMRI. <i>Biological Magnetic Resonance</i> , 2015 , 793-818	Bo.5	1
162	Techniques for Brain Functional Connectivity Analysis from High Resolution Imaging. <i>Studies in Computational Intelligence</i> , 2015 , 131-138	0.8	

16	61	Targeting of white matter tracts with transcranial magnetic stimulation. Brain Stimulation, 2014, 7, 80-4	5.1	46	
16	60	Quantitative comparison of cortical surface reconstructions from MP2RAGE and multi-echo MPRAGE data at 3 and 7 T. <i>Neurolmage</i> , 2014 , 90, 60-73	7.9	63	
15	59	Slice accelerated diffusion-weighted imaging at ultra-high field strength. <i>Magnetic Resonance in Medicine</i> , 2014 , 71, 1518-25	4.4	39	
15	58	Simultaneous multislice excitation by parallel transmission. <i>Magnetic Resonance in Medicine</i> , 2014 , 71, 1416-27	4.4	45	
15	57	Array Coils 2014 , 59-67		4	
15	56	A study-specific fMRI normalization approach that operates directly on high resolution functional EPI data at 7 Tesla. <i>NeuroImage</i> , 2014 , 100, 710-4	7.9	16	
15	55	Fast quantitative susceptibility mapping with L1-regularization and automatic parameter selection. <i>Magnetic Resonance in Medicine</i> , 2014 , 72, 1444-59	4.4	93	
15	54	Investigating the capability to resolve complex white matter structures with high b-value diffusion magnetic resonance imaging on the MGH-USC Connectom scanner. <i>Brain Connectivity</i> , 2014 , 4, 718-26	2.7	36	
15	53	Nineteen-channel receive array and four-channel transmit array coil for cervical spinal cord imaging at 7T. <i>Magnetic Resonance in Medicine</i> , 2014 , 72, 291-300	4.4	42	
15	52	A low power radiofrequency pulse for simultaneous multislice excitation and refocusing. <i>Magnetic Resonance in Medicine</i> , 2014 , 72, 949-58	4.4	40	
15	51	Slice accelerated gradient-echo spin-echo dynamic susceptibility contrast imaging with blipped CAIPI for increased slice coverage. <i>Magnetic Resonance in Medicine</i> , 2014 , 72, 770-8	4.4	31	
15	50	Interslice leakage artifact reduction technique for simultaneous multislice acquisitions. <i>Magnetic Resonance in Medicine</i> , 2014 , 72, 93-102	4.4	162	
14	49	Fast image reconstruction with L2-regularization. <i>Journal of Magnetic Resonance Imaging</i> , 2014 , 40, 181	-93.16	90	
12	48	Local specific absorption rate (SAR), global SAR, transmitter power, and excitation accuracy trade-offs in low flip-angle parallel transmit pulse design. <i>Magnetic Resonance in Medicine</i> , 2014 , 71, 144	4 8:\$ 7	71	
14	47	Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using SENSE. <i>Magnetic Resonance in Medicine</i> , 2013 , 70, 1682-9	4.4	132	
14	46	The challenge of connecting the dots in the B.R.A.I.N. <i>Neuron</i> , 2013 , 80, 270-4	13.9	60	
14	45	Surface based analysis of diffusion orientation for identifying architectonic domains in the in vivo human cortex. <i>Neurolmage</i> , 2013 , 69, 87-100	7.9	100	
14	44	Sparsity-promoting calibration for GRAPPA accelerated parallel MRI reconstruction. <i>IEEE</i> Transactions on Medical Imaging, 2013 , 32, 1325-35	11.7	51	

143	Fast dictionary-based reconstruction for diffusion spectrum imaging. <i>IEEE Transactions on Medical Imaging</i> , 2013 , 32, 2022-33	11.7	12
142	A 64-channel 3T array coil for accelerated brain MRI. <i>Magnetic Resonance in Medicine</i> , 2013 , 70, 248-58	4.4	148
141	Massively parallel MRI detector arrays. Journal of Magnetic Resonance, 2013, 229, 75-89	3	118
140	The Human Connectome Project and beyond: initial applications of 300 mT/m gradients. <i>NeuroImage</i> , 2013 , 80, 234-45	7.9	228
139	Predicting the location of human perirhinal cortex, Brodmann@ area 35, from MRI. <i>NeuroImage</i> , 2013 , 64, 32-42	7.9	59
138	Pushing the limits of in vivo diffusion MRI for the Human Connectome Project. <i>NeuroImage</i> , 2013 , 80, 220-33	7.9	331
137	Identification of discrete functional subregions of the human periaqueductal gray. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 17101-6	11.5	98
136	7-T MRI of the spinal cord can detect lateral corticospinal tract abnormality in amyotrophic lateral sclerosis. <i>Muscle and Nerve</i> , 2013 , 47, 760-2	3.4	28
135	A 22-channel receive array with Helmholtz transmit coil for anesthetized macaque MRI at 3 T. <i>NMR in Biomedicine</i> , 2013 , 26, 1431-40	4.4	16
134	32-channel phased-array receive with asymmetric birdcage transmit coil for hyperpolarized xenon-129 lung imaging. <i>Magnetic Resonance in Medicine</i> , 2013 , 70, 576-83	4.4	22
133	Entorhinal verrucae geometry is coincident and correlates with Alzheimer@lesions: a combined neuropathology and high-resolution ex vivo MRI analysis. <i>Acta Neuropathologica</i> , 2012 , 123, 85-96	14.3	18
132	7T MRI of spinal cord injury. <i>Neurology</i> , 2012 , 79, 2217	6.5	17
131	Accelerated diffusion spectrum imaging with compressed sensing using adaptive dictionaries. Magnetic Resonance in Medicine, 2012 , 68, spcone-spcone	4.4	4
130	Accelerated parallel magnetic resonance imaging reconstruction using joint estimation with a sparse signal model 2012 ,		2
129	Accelerated diffusion spectrum imaging with compressed sensing using adaptive dictionaries. <i>Magnetic Resonance in Medicine</i> , 2012 , 68, 1747-54	4.4	55
128	Neural correlates of the formation and retention of cocaine-induced stimulus-reward associations. <i>Biological Psychiatry</i> , 2012 , 72, 422-8	7.9	14
127	Optogenetically induced behavioral and functional network changes in primates. <i>Current Biology</i> , 2012 , 22, 1722-6	6.3	163
126	TB mapping and Blbrientation-dependence at 7 T reveal cyto- and myeloarchitecture organization of the human cortex. <i>NeuroImage</i> , 2012 , 60, 1006-14	7.9	111

125	The future of acquisition speed, coverage, sensitivity, and resolution. <i>NeuroImage</i> , 2012 , 62, 1221-9	7.9	34
124	An implanted 8-channel array coil for high-resolution macaque MRI at 3T. <i>NeuroImage</i> , 2012 , 62, 1529-3	3 6 7.9	38
123	Improving diffusion MRI using simultaneous multi-slice echo planar imaging. <i>NeuroImage</i> , 2012 , 63, 569	9-809	226
122	Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. <i>Magnetic Resonance in Medicine</i> , 2012 , 67, 1210-24	4.4	846
121	Local SAR in parallel transmission pulse design. <i>Magnetic Resonance in Medicine</i> , 2012 , 67, 1566-78	4.4	62
120	Denoising sparse images from GRAPPA using the nullspace method. <i>Magnetic Resonance in Medicine</i> , 2012 , 68, 1176-89	4.4	17
119	Sodium imaging of human brain at 7 T with 15-channel array coil. <i>Magnetic Resonance in Medicine</i> , 2012 , 68, 1807-14	4.4	33
118	Accelerated diffusion spectrum imaging with compressed sensing using adaptive dictionaries. <i>Lecture Notes in Computer Science</i> , 2012 , 15, 1-9	0.9	6
117	Physiological noise and signal-to-noise ratio in fMRI with multi-channel array coils. <i>NeuroImage</i> , 2011 , 55, 597-606	7.9	131
116	Echo-time and field strength dependence of BOLD reactivity in veins and parenchyma using flow-normalized hypercapnic manipulation. <i>PLoS ONE</i> , 2011 , 6, e24519	3.7	15
115	Regularizing GRAPPA using simultaneous sparsity to recover de-noised images 2011,		2
114	Quality assessment of high angular resolution diffusion imaging data using bootstrap on Q-ball reconstruction. <i>Journal of Magnetic Resonance Imaging</i> , 2011 , 33, 1194-208	5.6	27
113	A 20-channel receive-only mouse array coil for a 3 T clinical MRI system. <i>Magnetic Resonance in Medicine</i> , 2011 , 66, 584-95	4.4	14
112	32-channel RF coil optimized for brain and cervical spinal cord at 3 T. <i>Magnetic Resonance in Medicine</i> , 2011 , 66, 1198-208	4.4	38
111	Size-optimized 32-channel brain arrays for 3 T pediatric imaging. <i>Magnetic Resonance in Medicine</i> , 2011 , 66, 1777-87	4.4	92
110	CENTS: cortical enhanced neonatal tissue segmentation. <i>Human Brain Mapping</i> , 2011 , 32, 382-96	5.9	34
109	Combined compressed sensing and parallel mri compared for uniform and random cartesian undersampling of K-space 2011 ,		3
108	Evaluating sparsity penalty functions for combined compressed sensing and parallel MRI 2011,		2

107	Atlas-based segmentation for globus pallidus internus targeting on low-resolution MRI. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2011 , 2011, 5706-9	0.9	
106	Three dimensional echo-planar imaging at 7 Tesla. <i>NeuroImage</i> , 2010 , 51, 261-6	7.9	197
105	Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1. <i>NeuroImage</i> , 2010 , 52, 1334-46	7.9	286
104	Performance evaluation of a 32-element head array with respect to the ultimate intrinsic SNR. <i>NMR in Biomedicine</i> , 2010 , 23, 142-51	4.4	41
103	Proposing magnetic nanoparticle hyperthermia in low-field MRI. <i>Concepts in Magnetic Resonance Part A: Bridging Education and Research</i> , 2010 , 36A, 36-47	0.6	14
102	Design and evaluation of a 32-channel phased-array coil for lung imaging with hyperpolarized 3-helium. <i>Magnetic Resonance in Medicine</i> , 2010 , 63, 456-64	4.4	16
101	T2-weighted 3D fMRI using S2-SSFP at 7 tesla. <i>Magnetic Resonance in Medicine</i> , 2010 , 63, 1015-20	4.4	34
100	Four-dimensional spectral-spatial RF pulses for simultaneous correction of B1+ inhomogeneity and susceptibility artifacts in T2*-weighted MRI. <i>Magnetic Resonance in Medicine</i> , 2010 , 64, 1-8	4.4	20
99	Heating in the MRI environment due to superparamagnetic fluid suspensions in a rotating magnetic field. <i>Journal of Magnetism and Magnetic Materials</i> , 2010 , 322, 727-733	2.8	25
98	Simulating Magnetic Nanoparticle Behavior in Low-field MRI under Transverse Rotating Fields and Imposed Fluid Flow. <i>Journal of Magnetism and Magnetic Materials</i> , 2010 , 322, 2607-2617	2.8	5
97	In vivo 1D and 2D correlation MR spectroscopy of the soleus muscle at 7T. <i>Journal of Magnetic Resonance</i> , 2010 , 204, 91-8	3	33
96	Cortical enhanced tissue segmentation of neonatal brain MR images acquired by a dedicated phased array coil 2009 ,		2
95	Visual field map clusters in macaque extrastriate visual cortex. Journal of Neuroscience, 2009, 29, 7031-	96.6	133
94	Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI. <i>Hippocampus</i> , 2009 , 19, 549-57	3.5	331
93	Broadband slab selection with B1+ mitigation at 7T via parallel spectral-spatial excitation. <i>Magnetic Resonance in Medicine</i> , 2009 , 61, 493-500	4.4	46
92	Simultaneous z-shim method for reducing susceptibility artifacts with multiple transmitters. <i>Magnetic Resonance in Medicine</i> , 2009 , 61, 255-9	4.4	24
91	96-Channel receive-only head coil for 3 Tesla: design optimization and evaluation. <i>Magnetic Resonance in Medicine</i> , 2009 , 62, 754-62	4.4	211
90	Measuring SPIO and Gd contrast agent magnetization using 3 T MRI. <i>NMR in Biomedicine</i> , 2009 , 22, 891-	-74.4	12

(2008-2009)

89	Predicting the location of entorhinal cortex from MRI. <i>NeuroImage</i> , 2009 , 47, 8-17	7.9	78
88	Lung motion and volume measurement by dynamic 3D MRI using a 128-channel receiver coil. <i>Academic Radiology</i> , 2009 , 16, 22-7	4.3	30
87	Cortical Enhanced Tissue Segmentation of Neonatal Brain MR Images Acquired by a Dedicated Phased Array Coil. <i>Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition</i> , 2009 , 2009, 39-45	6	1
86	Sparsity-enforced slice-selective MRI RF excitation pulse design. <i>IEEE Transactions on Medical Imaging</i> , 2008 , 27, 1213-29	11.7	45
85	Accurate prediction of V1 location from cortical folds in a surface coordinate system. <i>NeuroImage</i> , 2008 , 39, 1585-99	7.9	179
84	Event-related single-shot volumetric functional magnetic resonance inverse imaging of visual processing. <i>NeuroImage</i> , 2008 , 42, 230-47	7.9	43
83	Stimulus-induced Rotary Saturation (SIRS): a potential method for the detection of neuronal currents with MRI. <i>NeuroImage</i> , 2008 , 42, 1357-65	7.9	33
82	The intrinsic shape of human and macaque primary visual cortex. <i>Cerebral Cortex</i> , 2008 , 18, 2586-95	5.1	31
81	2008,		2
80	Dissociation of neural regions associated with anticipatory versus consummatory phases of incentive processing. <i>Psychophysiology</i> , 2008 , 45, 36-49	4.1	69
79	Physiological noise in MR images: an indicator of the tissue response to ischemia?. <i>Journal of Magnetic Resonance Imaging</i> , 2008 , 27, 866-71	5.6	14
79 78		5.6 5.6	14 54
	Magnetic Resonance Imaging, 2008, 27, 866-71 Specific absorption rate studies of the parallel transmission of inner-volume excitations at 7T.		·
78	Magnetic Resonance Imaging, 2008, 27, 866-71 Specific absorption rate studies of the parallel transmission of inner-volume excitations at 7T. Journal of Magnetic Resonance Imaging, 2008, 28, 1005-18 Magnitude least squares optimization for parallel radio frequency excitation design demonstrated	5.6	54
78 77	Magnetic Resonance Imaging, 2008, 27, 866-71 Specific absorption rate studies of the parallel transmission of inner-volume excitations at 7T. Journal of Magnetic Resonance Imaging, 2008, 28, 1005-18 Magnitude least squares optimization for parallel radio frequency excitation design demonstrated at 7 Tesla with eight channels. Magnetic Resonance in Medicine, 2008, 59, 908-15 Accelerated proton echo planar spectroscopic imaging (PEPSI) using GRAPPA with a 32-channel	5.6 4·4	54 153
78 77 76	Specific absorption rate studies of the parallel transmission of inner-volume excitations at 7T. Journal of Magnetic Resonance Imaging, 2008, 28, 1005-18 Magnitude least squares optimization for parallel radio frequency excitation design demonstrated at 7 Tesla with eight channels. Magnetic Resonance in Medicine, 2008, 59, 908-15 Accelerated proton echo planar spectroscopic imaging (PEPSI) using GRAPPA with a 32-channel phased-array coil. Magnetic Resonance in Medicine, 2008, 59, 989-98 Fast slice-selective radio-frequency excitation pulses for mitigating B+1 inhomogeneity in the	5.6 4.4 4.4	5415355
78 77 76	Magnetic Resonance Imaging, 2008, 27, 866-71 Specific absorption rate studies of the parallel transmission of inner-volume excitations at 7T. Journal of Magnetic Resonance Imaging, 2008, 28, 1005-18 Magnitude least squares optimization for parallel radio frequency excitation design demonstrated at 7 Tesla with eight channels. Magnetic Resonance in Medicine, 2008, 59, 908-15 Accelerated proton echo planar spectroscopic imaging (PEPSI) using GRAPPA with a 32-channel phased-array coil. Magnetic Resonance in Medicine, 2008, 59, 989-98 Fast slice-selective radio-frequency excitation pulses for mitigating B+1 inhomogeneity in the human brain at 7 Tesla. Magnetic Resonance in Medicine, 2008, 59, 1355-64 A 128-channel receive-only cardiac coil for highly accelerated cardiac MRI at 3 Tesla. Magnetic	5.6 4.4 4.4 4.4	541535559

71	High-flip-angle slice-selective parallel RF transmission with 8 channels at 7 T. <i>Journal of Magnetic Resonance</i> , 2008 , 195, 76-84	3	35
70	Multimodal Registration of White Matter Brain Data via Optimal Mass Transport 2008 , 2008, 27-35		
69	Model-based segmentation of hippocampal subfields in ultra-high resolution in vivo MRI. <i>Lecture Notes in Computer Science</i> , 2008 , 11, 235-43	0.9	18
68	Comparison of three algorithms for solving linearized systems of parallel excitation RF waveform design equations: Experiments on an eight-channel system at 3 Tesla. <i>Concepts in Magnetic Resonance Part B</i> , 2007 , 31B, 176-190	2.3	7
67	Sensitivity-encoded (SENSE) proton echo-planar spectroscopic imaging (PEPSI) in the human brain. <i>Magnetic Resonance in Medicine</i> , 2007 , 57, 249-57	4.4	71
66	Degenerate mode band-pass birdcage coil for accelerated parallel excitation. <i>Magnetic Resonance in Medicine</i> , 2007 , 57, 1148-58	4.4	48
65	Visual word processing and experiential origins of functional selectivity in human extrastriate cortex. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 9087	- 11 .5	277
64	Phase maps reveal cortical architecture. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 11513-4	11.5	27
63	3.0 T plaque imaging. <i>Topics in Magnetic Resonance Imaging</i> , 2007 , 18, 389-400	2.3	7
62	Frontal connections and cognitive changes in normal aging rhesus monkeys: a DTI study. Neurobiology of Aging, 2007, 28, 1556-67	5.6	96
61	Brain, skull, and cerebrospinal fluid volumes in adult posttraumatic stress disorder. <i>Journal of Traumatic Stress</i> , 2007 , 20, 763-74	3.8	16
60	Parallel-Excitation Techniques for Ultra-High-Field MRI. <i>Medical Radiology</i> , 2007 , 511-521	0.2	1
59	New Coil Systems for Highly Parallel MR Acquisition Strategies. <i>Medical Radiology</i> , 2007 , 497-510	0.2	2
58	32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry. Magnetic Resonance in Medicine, 2006 , 56, 216-23	4.4	300
57	Direct parallel image reconstructions for spiral trajectories using GRAPPA. <i>Magnetic Resonance in Medicine</i> , 2006 , 56, 317-26	4.4	73
56	Dynamic magnetic resonance inverse imaging of human brain function. <i>Magnetic Resonance in Medicine</i> , 2006 , 56, 787-802	4.4	84
55	Parallel RF transmission with eight channels at 3 Tesla. <i>Magnetic Resonance in Medicine</i> , 2006 , 56, 1163-	741.4	129
54	Signal-to-noise ratio and spectral linewidth improvements between 1.5 and 7 Tesla in proton echo-planar spectroscopic imaging. <i>Magnetic Resonance in Medicine</i> , 2006 , 56, 1200-10	4.4	106

(2004-2006)

53	Accelerated volumetric MRI with a SENSE/GRAPPA combination. <i>Journal of Magnetic Resonance Imaging</i> , 2006 , 24, 444-50	5.6	59
52	Hippocampal Volume, PTSD, and Alcoholism in Combat Veterans. <i>American Journal of Psychiatry</i> , 2006 , 163, 674-681	11.9	61
51	Effect of spatial smoothing on physiological noise in high-resolution fMRI. NeuroImage, 2006, 32, 551-7	7.9	107
50	Bright and black blood imaging of the carotid bifurcation at 3.0T. <i>European Journal of Radiology</i> , 2006 , 57, 403-11	4.7	18
49	Targeted imaging of human endothelial-specific marker in a model of adoptive cell transfer. <i>Laboratory Investigation</i> , 2006 , 86, 599-609	5.9	57
48	Hippocampal volume, PTSD, and alcoholism in combat veterans. <i>American Journal of Psychiatry</i> , 2006 , 163, 674-81	11.9	35
47	High-Resolution and Microscopic Imaging at High Field 2006 , 343-371		2
46	Aspects of Clinical Imaging at 7 T. <i>Biological Magnetic Resonance</i> , 2006 , 59-103	0.5	2
45	Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. <i>NeuroImage</i> , 2005 , 26, 243-50	7.9	495
44	Nonstationary noise estimation in functional MRI. <i>NeuroImage</i> , 2005 , 28, 890-903	7.9	36
43	Detection of entorhinal layer II using 7Tesla [corrected] magnetic resonance imaging. <i>Annals of Neurology</i> , 2005 , 57, 489-94	9.4	93
42	Eight-channel phased array coil and detunable TEM volume coil for 7 T brain imaging. <i>Magnetic Resonance in Medicine</i> , 2005 , 54, 235-40	4.4	76
41	Functional MRI using regularized parallel imaging acquisition. <i>Magnetic Resonance in Medicine</i> , 2005 , 54, 343-53	4.4	44
40	Uncovering of intracellular water in cultured cells. <i>Magnetic Resonance in Medicine</i> , 2005 , 54, 79-86	4.4	16
39	Design considerations and coil comparisons for 7 T brain imaging. <i>Applied Magnetic Resonance</i> , 2005 , 29, 19-37	0.8	40
38	3T phased array MRI improves the presurgical evaluation in focal epilepsies: a prospective study. <i>Neurology</i> , 2005 , 65, 1026-31	6.5	176
37	Parallel imaging reconstruction using automatic regularization. <i>Magnetic Resonance in Medicine</i> , 2004 , 51, 559-67	4.4	192
36	Aids to telemetry in the presurgical evaluation of epilepsy patients: MRI, MEG and other non-invasive imaging techniques. <i>Supplements To Clinical Neurophysiology</i> , 2004 , 57, 494-502		5

35	Comparison of cardiac MRI on 1.5 and 3.0 Tesla clinical whole body systems. <i>Investigative Radiology</i> , 2003 , 38, 436-42	10.1	49
34	A wavelet-based approximation of surface coil sensitivity profiles for correction of image intensity inhomogeneity and parallel imaging reconstruction. <i>Human Brain Mapping</i> , 2003 , 19, 96-111	5.9	59
33	Degenerate mode birdcage volume coil for sensitivity-encoded imaging. <i>Magnetic Resonance in Medicine</i> , 2003 , 50, 1107-11	4.4	16
32	In vivo tracing of major rat brain pathways using manganese-enhanced magnetic resonance imaging and three-dimensional digital atlasing. <i>NeuroImage</i> , 2003 , 20, 1591-600	7.9	95
31	Stereopsis activates V3A and caudal intraparietal areas in macaques and humans. <i>Neuron</i> , 2003 , 39, 555	5 -68 .9	267
30	In vivo GABA+ measurement at 1.5T using a PRESS-localized double quantum filter. <i>Magnetic Resonance in Medicine</i> , 2002 , 48, 233-41	4.4	34
29	A detunable elliptic transmission line resonator for body imaging at 3 Tesla. <i>Concepts in Magnetic Resonance</i> , 2002 , 15, 92-100		2
28	Chronic citicoline increases phosphodiesters in the brains of healthy older subjects: an in vivo phosphorus magnetic resonance spectroscopy study. <i>Psychopharmacology</i> , 2002 , 161, 248-54	4.7	34
27	Modulation of brain and serum glutamatergic concentrations following a switch from conventional neuroleptics to olanzapine. <i>Biological Psychiatry</i> , 2002 , 51, 493-7	7.9	85
26	Repeated fMRI using iron oxide contrast agent in awake, behaving macaques at 3 Tesla. <i>NeuroImage</i> , 2002 , 16, 283-94	7.9	212
25	Brain proton magnetic resonance spectroscopy in Alzheimer disease: changes after treatment with xanomeline. <i>American Journal of Geriatric Psychiatry</i> , 2002 , 10, 81-8	6.5	15
24	Three-dimensional magnetic resonance spectroscopic imaging of histologically confirmed brain tumors. <i>Magnetic Resonance Imaging</i> , 2001 , 19, 89-101	3.3	85
23	Systematic spatial distortion in MRI due to gradient non-linearities. <i>NeuroImage</i> , 2001 , 13, 50	7.9	11
22	A phased array echoplanar imaging system for fMRI. <i>Magnetic Resonance Imaging</i> , 1999 , 17, 121-9	3.3	9
21	Lactate detection at 3T: compensating J coupling effects with BASING. <i>Journal of Magnetic Resonance Imaging</i> , 1999 , 9, 732-7	5.6	61
20	NAA-weighted imaging of the human brain using a conventional readout gradient. <i>Magnetic Resonance in Medicine</i> , 1999 , 41, 187-92	4.4	3
19	High spatial resolution 1H-MRSI and segmented MRI of cortical gray matter and subcortical white matter in three regions of the human brain. <i>Magnetic Resonance in Medicine</i> , 1999 , 41, 21-9	4.4	77
18	Multislice perfusion and perfusion territory imaging in humans with separate label and image coils. Magnetic Resonance in Medicine, 1999 , 41, 1093-8	4.4	124

LIST OF PUBLICATIONS

17	T1 effects in sequential dynamic susceptibility contrast experiments. <i>Journal of Magnetic Resonance</i> , 1998 , 130, 292-5	3	19	
16	A localized double-quantum filter for the in vivo detection of brain glucose. <i>Magnetic Resonance in Medicine</i> , 1998 , 39, 651-6	4.4	32	
15	Serial proton magnetic resonance spectroscopy imaging of glioblastoma multiforme after brachytherapy. <i>Journal of Neurosurgery</i> , 1997 , 87, 525-34	3.2	134	
14	High resolution T2-weighted imaging of the human brain using surface coils and an analytical reception profile correction. <i>Journal of Magnetic Resonance Imaging</i> , 1997 , 7, 512-7	5.6	16	
13	Volume MRI and MRSI techniques for the quantitation of treatment response in brain tumors: presentation of a detailed case study. <i>Journal of Magnetic Resonance Imaging</i> , 1997 , 7, 1146-52	5.6	74	
12	In vivo detection of GABA in human brain using a localized double-quantum filter technique. <i>Magnetic Resonance in Medicine</i> , 1997 , 37, 366-71	4.4	106	
11	Theory and application of array coils in MR spectroscopy. NMR in Biomedicine, 1997, 10, 394-410	4.4	221	
10	Alignment of volume MR images and high resolution [18F]fluorodeoxyglucose PET images for the evaluation of patients with brain tumors. <i>Journal of Computer Assisted Tomography</i> , 1997 , 21, 183-91	2.2	18	
9	A technique for detecting GABA in the human brain with PRESS localization and optimized refocusing spectral editing radiofrequency pulses. <i>Magnetic Resonance in Medicine</i> , 1996 , 36, 458-61	4.4	47	
8	Phased array detectors and an automated intensity-correction algorithm for high-resolution MR imaging of the human brain. <i>Magnetic Resonance in Medicine</i> , 1995 , 34, 433-9	4.4	123	
7	Proton spectroscopic imaging of the human brain using phased array detectors. <i>Magnetic Resonance in Medicine</i> , 1995 , 34, 440-5	4.4	77	
6	Variation of the Pr^3+ nuclear quadrupole resonance spectrum across the inhomogeneous optical line in Pr^3+:LaF_3. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1992 , 9, 784	1.7	6	
5	Fluorine spin frozen core in Pr^3+:LaF_3 observed by cross relaxation. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1992 , 9, 789	1.7	14	
4	. IEEE Transactions on Magnetics, 1989 , 25, 1193-1199	2	28	
3	7 Tesla MRI of the ex vivo human brain at 100 micron resolution		5	
2	Simultaneous pure T2 and varying T2?-weighted BOLD fMRI using Echo Planar Time-resolved Imaging for mapping cortical-depth dependent responses		2	
1	3D Echo Planar Time-resolved Imaging (3D-EPTI) for ultrafast multi-parametric quantitative MRI		2	