Marta Giamberini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1570647/publications.pdf

Version: 2024-02-01

172457 254184 2,374 108 29 43 citations h-index g-index papers 113 113 113 1993 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Synthesis and characterization of dendritic compounds containing nitrogen: monomer precursors in the construction of biomimetic membranes. Scientific Reports, 2022, 12, 1725.	3.3	3
2	Dielectric Properties in Oriented and Unoriented Membranes Based on Poly(Epichlorohydrin-co-Ethylene Oxide) Copolymers: Part III. Polymers, 2022, 14, 1369.	4.5	1
3	Alginate-based hydrogels for cancer therapy and research. International Journal of Biological Macromolecules, 2021, 170, 424-436.	7.5	59
4	Molecular Mobility in Oriented and Unoriented Membranes Based on Poly[2-(Aziridin-1-yl)ethanol]. Polymers, 2021, 13, 1060.	4.5	4
5	Effect of Dendritic Side Groups on the Mobility of Modified Poly(epichlorohydrin) Copolymers. Polymers, 2021, 13, 1961.	4.5	5
6	Medical Plaster Enhancement by Coating with Cistus L. Extracts within a Chitosan Matrix: From Natural Complexity to Health Care Simplicity. Materials, 2021, 14, 582.	2.9	1
7	Membranes for Cation Transport Based on Dendronized Poly(epichlorohydrin-co-ethylene oxide). Part 1: The Effect of Dendron Amount and Column Orientation on Copolymer Mobility. Polymers, 2021, 13, 3532.	4.5	4
8	Membranes for Cation Transport Based on Dendronized Poly(Epichlorohydrin-Co-Ethylene Oxide). Part 2: Membrane Characterization and Transport Properties. Polymers, 2021, 13, 3915.	4.5	1
9	Current Perspectives of the Applications of Polyphenols and Flavonoids in Cancer Therapy. Molecules, 2020, 25, 3342.	3.8	71
10	Functionalized fluorescent terephthalate monomers and their attempted polyester formation. Organic and Biomolecular Chemistry, 2020, 18, 8735-8745.	2.8	1
11	Contrasting Photo-Switching Rates in Azobenzene Derivatives: How the Nature of the Substituent Plays a Role. Polymers, 2020, 12, 1019.	4.5	9
12	2. Light-sensitive microcapsules based on modified and un-modified azobenzene moieties., 2020,, 23-48.		0
13	Preparation and Characterization of UV-Curable Acrylic Membranes Embedding Natural Antioxidants. Polymers, 2020, 12, 358.	4.5	3
14	Stability and anti-proliferative properties of biologically active compounds extracted from Cistus L. after sterilization treatments. Scientific Reports, 2020, 10, 6521.	3.3	16
15	Encapsulation for Cancer Therapy. Molecules, 2020, 25, 1605.	3.8	56
16	Synthesis and synthetic mechanism of Polylactic acid. Physical Sciences Reviews, 2020, .	0.8	7
17	Photo-triggered capsules based on lanthanide-doped upconverting nanoparticles for medical applications. Coordination Chemistry Reviews, 2019, 398, 213013.	18.8	17
18	Visible-Light Responsive Nanocapsules for Wavelength-Selective Release of Natural Active Agents. ACS Applied Nano Materials, 2019, 2, 4499-4506.	5.0	30

#	Article	IF	CITATIONS
19	Polymer Blends for Improved CO2 Capture Membranes. Polymers, 2019, 11, 1662.	4.5	7
20	Molecular Design of Microcapsule Shells for Visible Light-Triggered Release. Polymers, 2019, 11, 904.	4.5	6
21	Ortho-substituted azobenzene: shedding light on new benefits. Pure and Applied Chemistry, 2019, 91, 1533-1546.	1.9	4
22	Light-Responsive Nanocapsule-Coated Polymer Films for Antimicrobial Active Packaging. Polymers, 2019, 11, 68.	4.5	42
23	Squeezing release mechanism of encapsulated compounds from photo-sensitive microcapsules. Applied Surface Science, 2019, 472, 143-149.	6.1	11
24	Shape memory behavior of liquid-crystalline elastomer/graphene oxide nanocomposites. Composites Science and Technology, 2018, 159, 251-258.	7.8	32
25	Smart microcapsules for precise delivery systems. Functional Materials Letters, 2018, 11, 1850041.	1.2	4
26	Thermal and Mechanical Characterization of EMA-TEGDMA Mixtures for Cosmetic Applications. Polymers, 2018, 10, 256.	4.5	5
27	In Situ Raman Spectroscopy as a Tool for Structural Insight into Cation Non-Ionomeric Polymer Interactions during Ion Transport. Polymers, 2018, 10, 416.	4.5	9
28	Essential oils as solvents and core materials for the preparation of photo-responsive polymer nanocapsules. Nano Research, 2018, 11, 2783-2795.	10.4	29
29	Power of light – Functional complexes based on azobenzene molecules. Coordination Chemistry Reviews, 2017, 351, 205-217.	18.8	46
30	6. Technological solutions for encapsulation. , 2017, , 171-202.		5
31	Light-Responsive Polymer Micro- and Nano-Capsules. Polymers, 2017, 9, 8.	4.5	74
32	Modeling of Azobenzene-Based Compounds. ChemistrySelect, 2017, 2, .	1.5	9
33	Technological solutions for encapsulation. ChemistrySelect, 2017, 2, .	1.5	17
34	Concentration and Fractionation of Polyphenols by Membrane Operations. Current Pharmaceutical Design, 2017, 23, 231-241.	1.9	12
35	Photoâ€Triggered Microcapsules. Macromolecular Symposia, 2016, 360, 192-198.	0.7	13
36	Advances in the design of self-supported ion-conducting membranes-new family of columnar liquid crystalline polyamines. Part 1: Copolymer synthesis and membrane preparation. Polymer, 2016, 105, 298-309.	3.8	9

#	Article	IF	Citations
37	Liquid crystalline polymeric wires for selective proton transport, part 2: Ion transport in solid-state. Polymer, 2016, 92, 58-65.	3.8	11
38	Advances in the design of self-supported ion-conducting membranes – New family of columnar liquid crystalline polyamines. Part 2: Ion transport characterisation and comparison to hybrid membranes. Polymer, 2016, 105, 234-242.	3.8	10
39	Liquid crystalline polymeric wires for selective proton transport, part 1: Wires preparation. Polymer, 2016, 92, 50-57.	3.8	13
40	Mimicking nature: Biomimetic ionic channels. Journal of Membrane Science, 2016, 509, 10-18.	8.2	13
41	1. Photosensitive microcapsules. , 2015, , 1-18.		0
42	2. Smart microcapsules based on photo-isomerizable moieties. , 2015, , 19-36.		0
43	An atomistic insight into lightâ€sensitive polymers with methylstilbene building blocks. Polymer International, 2015, 64, 935-941.	3.1	1
44	Effect of phosphorous-containing modified poly(vinyl alcohol) on the mechanical and flame retardant properties of polypropylene. EXPRESS Polymer Letters, 2015, 9, 330-343.	2.1	11
45	Photo-responsive polymer nanocapsules. Polymer, 2015, 70, 222-230.	3.8	45
46	Columnar liquid crystalline polyglycidol derivatives: A novel alternative for proton-conducting membranes. Polymer, 2015, 66, 100-109.	3.8	13
47	Photo-triggered release in polyamide nanosized capsules. , 2014, , .		4
48	Synthesis and characterization of a new family of photoactive liquid crystalline polyesters based on ⟨i⟩α⟨ i⟩â€methylstilbene. Polymer International, 2014, 63, 315-326.	3.1	3
49	Synthesis and characterisation of a monotropic dendritic liquid crystalline aziridine monomer. Liquid Crystals, 2014, 41, 153-162.	2.2	2
50	Preparation of a versatile precursor of novel functionalized polymers: the influence of polymerization conditions on the structure of poly [1-(2-hydroxyethyl)aziridine]. Polymer Engineering and Science, 2014, 54, 579-591.	3.1	3
51	New liquid crystalline columnar poly(epichlorohydrinâ€ <i>co</i> àâ€ethylene oxide) derivatives leading to biomimetic ion channels. Polymer Engineering and Science, 2013, 53, 159-167.	3.1	16
52	Acrylic microspheres as drugâ€delivery systems: synthesis through ⟨i⟩in situ⟨/i⟩ microemulsion photoinduced polymerization and characterization. Polymer International, 2013, 62, 304-309.	3.1	4
53	Preparation and Characterization of Light-Sensitive Microcapsules Based on a Liquid Crystalline Polyester. Langmuir, 2013, 29, 1601-1608.	3.5	34

Flame retardant phosphorous-containing polymers obtained by chemically modifying poly(vinyl) Tj ETQq0 0 0 rgBT 10 yerlock 10 Tf 50 62

#	Article	IF	CITATIONS
55	Liquid crystalline polyamines containing side dendrons: Toward the building of ion channels based on polyamines. Polymer, 2013, 54, 5133-5140.	3.8	14
56	Hybrid organic–inorganic UV-cured films containing liquid-crystalline units. Thin Solid Films, 2013, 548, 150-156.	1.8	12
57	Permeation Behavior of Polysulfone Membranes Modified by Fully Organic Layer-by-Layer Assemblies. Industrial & Description of Polysulfone Membranes Modified by Fully Organic Layer-by-Layer Assemblies.	3.7	16
58	The importance of orientation in proton transport of a polymer film based on an oriented self-organized columnar liquid-crystalline polyether. Materials Science and Engineering C, 2012, 32, 105-111.	7.3	15
59	Concentration of biologically active compounds extracted from Sideritis ssp. L. by nanofiltration. Food and Bioproducts Processing, 2011, 89, 307-314.	3.6	64
60	Extraction of biologically active compounds from propolis and concentration of extract by nanofiltration. Journal of Membrane Science, 2010, 348, 124-130.	8.2	81
61	The effect of chain packing on the thermal and dynamic mechanical behaviour of liquidâ€crystalline epoxy thermosets. Polymer International, 2010, 59, 1415-1421.	3.1	7
62	Light-Induced Switching of the Wettability of Novel Asymmetrical Poly(vinyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5 14821-14829.	3.5	(alcohol)- <i>c</i>
63	Synthesis, characterization, and photoresponsive behavior of new azobenzeneâ€containing polyethers. Journal of Polymer Science Part A, 2009, 47, 5426-5436.	2.3	18
64	Freezing the orientation of a nematic stretched elastomer by photocrosslinking. Polymer, 2009, 50, 1948-1956.	3.8	5
65	Preparation of a new lightly cross-linked liquid crystalline polyamide by interfacial polymerization. Application to the obtainment of microcapsules with photo-triggered release. European Polymer Journal, 2009, 45, 1420-1432.	5.4	50
66	Interfacial polymerization of an epoxy resin and carboxylic acids for the synthesis of microcapsules. Polymer International, 2008, 57, 995-1006.	3.1	48
67	CAPE tools in biotechnology: why, when, what, who, which ones and where?. Computer Aided Chemical Engineering, 2008, , 1181-1186.	0.5	0
68	Lightly crosslinked, mesomorphic networks obtained through the reaction of dimeric, liquid-crystalline epoxy–imine monomers and heptanedioic acid. Journal of Polymer Science Part A, 2006, 44, 6270-6286.	2.3	9
69	Influence of the side group shape on the arrangement of liquid-crystalline polyethers obtained by ring opening polymerization of oxiranes. Journal of Polymer Science Part A, 2006, 44, 1722-1733.	2.3	2
70	Vinyl-terminated side-chain liquid-crystalline polyethers containing mesogenic benzylideneaniline moieties. Journal of Polymer Science Part A, 2006, 44, 1877-1889.	2.3	8
71	Viscoelasticity of main chain liquid crystalline elastomers. Polymer, 2006, 47, 4490-4496.	3.8	24
72	Liquid crystalline elastomers based on diglycidyl terminated rigid monomers and aliphatic acids. Part 1. Synthesis and characterization. Polymer, 2005, 46, 2105-2121.	3.8	32

#	Article	IF	CITATIONS
73	Liquid crystalline elastomers based on diglycidyl terminated rigid monomers and aliphatic acids. Part 2. Mechanical characterization. Polymer, 2005, 46, 9113-9125.	3.8	23
74	Poly(epichlorohydrin) modified with 3,4,5-tris(dodecyloxy)benzoate: The structure and dynamics of the aliphatic side chains in the columnar mesophase. Journal of Polymer Science Part A, 2005, 43, 2099-2111.	2.3	4
75	Self-organized liquid-crystalline polyethers obtained by grafting tapered mesogenic groups onto poly(epichlorohydrin): Toward biomimetic ion channels 2. Journal of Polymer Science Part A, 2004, 42, 326-340.	2.3	19
76	Anisotropic thermosets from liquid-crystalline azomethynic epoxy resins and primary aromatic diamines. Journal of Polymer Science Part A, 2003, 41, 1-12.	2.3	37
77	Self-organized liquid-crystalline polyethers obtained by grafting tapered mesogenic groups onto poly(epichlorohydrin): Toward biomimetic ion channels. Journal of Polymer Science Part A, 2003, 41, 2918-2929.	2.3	18
78	Liquid crystalline vinyl ester resins for structural adhesives. Journal of Adhesion Science and Technology, 2002, 16, 15-32.	2.6	25
79	Self-toughening liquid crystalline vinyl ester adhesives. Macromolecular Symposia, 2002, 180, 153-168.	0.7	18
80	Epoxy+liquid crystalline epoxy coreacted networks: II. Mechanical properties. Polymer, 2002, 43, 839-848.	3.8	31
81	Epoxy+liquid crystalline epoxy coreacted networks: I. Synthesis and curing kinetics. Polymer, 2001, 42, 2067-2075.	3.8	49
82	Liquid crystalline epoxy resin with improved toughness. Journal of Adhesion Science and Technology, 2001, 15, 1635-1654.	2.6	6
83	Composites based on carbon fibers and liquid crystalline epoxy resins, 1 Monomer synthesis and matrix curing. Macromolecular Chemistry and Physics, 2000, 201, 2631-2638.	2.2	19
84	Composites based on carbon fibers and liquid crystalline epoxy resins, 2 Dynamic-mechanical analysis and fracture toughness behavior. Macromolecular Chemistry and Physics, 2000, 201, 2639-2645.	2.2	18
85	A novel approach to the tailoring of polymers for advanced composites and optical applications, involving the synthesis of liquid crystalline epoxy resins. Polymer Engineering and Science, 1999, 39, 534-542.	3.1	9
86	Curing Reaction Kinetics of Liquid Crystalline Resin Based on 6,6′-Bis (2,3-Epoxypropoxy)-2,2′ Binaphthyl. Molecular Crystals and Liquid Crystals, 1999, 336, 183-198.	0.3	4
87	The effect of prepolymer composition of aminoâ€hardened liquid crystalline epoxy resins on physical properties of cured thermoset. Macromolecular Symposia, 1999, 148, 197-209.	0.7	32
88	Can liquid crystalline polymers find application in the field of protective coatings?. Anti-Corrosion Methods and Materials, 1999, 46, 95-99.	1.5	5
89	<title>Crosslinked anisotropic network based on liquid crystalline precursors as a liquid-crystal-aligning layer</title> ., 1997,,.		1
90	Modeling of Curing Reaction Kinetics in Liquid-Crystalline Epoxy Resins. Industrial & Engineering Chemistry Research, 1997, 36, 2976-2983.	3.7	32

#	Article	IF	CITATIONS
91	Liquid crystalline epoxy based thermosetting polymers. Progress in Polymer Science, 1997, 22, 1607-1647.	24.7	126
92	Lightly crosslinked liquid crystalline epoxy resins: The effect of rigid-rod length and applied stress on the state of order of the cured thermoset. Macromolecular Chemistry and Physics, 1997, 198, 3185-3196.	2.2	38
93	Liquid crystalline epoxy resins in polymer dispersed liquid crystal composites., 1997, 44, 465-473.		25
94	Role of Curing Agent on the Nature of the Mesophase and the Properties of Mesogenic Epoxy Resins. ACS Symposium Series, 1996, , 389-404.	0.5	0
95	Highly Uniform Oriented Liquid Crystalline Thermosets. Materials Research Society Symposia Proceedings, 1996, 425, 161.	0.1	0
96	Anisotropic liquid crystalline epoxy thermoset. Liquid Crystals, 1996, 21, 317-325.	2.2	15
97	Curing reactions of a liquid crystalline epoxy resin based on the diglycidyl ether of 4,4′-dihydroxy-α-methylstilbene. Macromolecular Chemistry and Physics, 1995, 196, 1577-1591.	2.2	59
98	Curing of a rigid rod epoxy resin with an aliphatic diacid: an example of a lightly crosslinked liquid crystalline thermoset. Macromolecular Rapid Communications, 1995, 16, 97-105.	3.9	33
99	Water sorption in a novel liquid crystalline epoxy resin. Polymer Engineering and Science, 1995, 35, 137-143.	3.1	11
100	Liquid Crystalline Epoxy Thermosets. Molecular Crystals and Liquid Crystals, 1995, 266, 9-22.	0.3	64
101	Rigid rod networks: Liquid crystalline epoxy resins. Composite Structures, 1994, 27, 37-43.	5 . 8	45
102	Liquid-crystalline epoxy resins: curing of blends of mesogenic and non-mesogenic epoxy monomers. Journal of Materials Science Letters, 1994, 13, 126-128.	0.5	21
103	Liquid-crystalline epoxy resins: a glycidyl-terminated benzaldehyde azine cured in the nematic phase. Macromolecular Chemistry and Physics, 1994, 195, 279-287.	2.2	52
104	Liquid crystalline epoxy resins containing binaphthyl group as rigid block with enhanced thermal stability. Macromolecular Chemistry and Physics, 1994, 195, 2307-2315.	2.2	45
105	A new enzyme immobilization procedure using copper alginate gel: Application to a fungal phenol oxidase. Enzyme and Microbial Technology, 1994, 16, 151-158.	3.2	93
106	Liquid Crystalline Epoxy Resins. , 1994, , 69-85.		25
107	Curing kinetics of liquid-crystalline epoxy resins. Liquid Crystals, 1993, 13, 571-584.	2.2	90
108	Limited proteolysis as a probe of conformational changes in aspartate aminotransferase from Sulfolobus solfataricus. FEBS Journal, 1992, 204, 1183-1189.	0.2	26