
Sofie Lindström

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1570529/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism. Nature Geoscience, 2009, 2, 589-594.	12.9	227
2	Gondwanan floristic and sedimentological trends during the Permian–Triassic transition: new evidence from the Amery Group, northern Prince Charles Mountains, East Antarctica. Antarctic Science, 1997, 9, 281-298.	0.9	136
3	Synchronous palynofloristic extinction and recovery after the end-Permian event in the Prince Charles Mountains, Antarctica: Implications for palynofloristic turnover across Gondwana. Review of Palaeobotany and Palynology, 2007, 145, 89-122.	1.5	114
4	A new correlation of Triassic–Jurassic boundary successions in NW Europe, Nevada and Peru, and the Central Atlantic Magmatic Province: A time-line for the end-Triassic mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 478, 80-102.	2.3	101
5	Hydrogen sulphide poisoning of shallow seas following the end-Triassic extinction. Nature Geoscience, 2012, 5, 662-667.	12.9	97
6	Synchronous Wildfire Activity Rise and Mire Deforestation at the Triassic–Jurassic Boundary. PLoS ONE, 2012, 7, e47236.	2.5	87
7	Volcanic mercury and mutagenesis in land plants during the end-Triassic mass extinction. Science Advances, 2019, 5, eaaw4018.	10.3	79
8	Intraspecific Variation of Taeniate Bisaccate Pollen Within Permian Glossopterid Sporangia, from the Prince Charles Mountains, Antarctica. International Journal of Plant Sciences, 1997, 158, 673-684.	1.3	74
9	No causal link between terrestrial ecosystem change and methane release during the end-Triassic mass extinction. Geology, 2012, 40, 531-534.	4.4	70
10	Early Permian palynostratigraphy of the northern Heimefrontfjella mountain-range, Dronning Maud Land, Antarctica. Review of Palaeobotany and Palynology, 1995, 89, 359-415.	1.5	68
11	Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7909-7913.	7.1	68
12	A major sea-level drop briefly precedes the Toarcian oceanic anoxic event: implication for Early Jurassic climate and carbon cycle. Scientific Reports, 2019, 9, 12518.	3.3	61
13	The late Rhaetian transgression in southern Sweden: Regional (and global) recognition and relation to the Triassic–Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 241, 339-372.	2.3	60
14	Intense and widespread seismicity during the end-Triassic mass extinction due to emplacement of a large igneous province. Geology, 2015, 43, 387-390.	4.4	52
15	Palynofloral patterns of terrestrial ecosystem change during the end-Triassic event – a review. Geological Magazine, 2016, 153, 223-251.	1.5	52
16	Tracing volcanic emissions from the Central Atlantic Magmatic Province in the sedimentary record. Earth-Science Reviews, 2021, 212, 103444.	9.1	46
17	Palynology and terrestrial ecosystem change of the Middle Triassic to lowermost Jurassic succession of the eastern Danish Basin. Review of Palaeobotany and Palynology, 2017, 244, 65-95.	1.5	45
18	Composition, peat-forming vegetation and kerogen paraffinicity of Cenozoic coals: Relationship to variations in the petroleum generation potential (Hydrogen Index). International Journal of Coal Geology, 2009, 78, 119-134.	5.0	38

Sofie Lindström

#	Article	IF	CITATIONS
19	Late Permian palynology of Fossilryggen, Vestfjella, Dronning Maud Land, Antarctica. Palynology, 1996, 20, 15-48.	1.5	34
20	Catastrophic soil loss associated with end-Triassic deforestation. Earth-Science Reviews, 2020, 210, 103332.	9.1	34
21	Palynology of the upper Chinle Formation in northern New Mexico, U.S.A.: Implications for biostratigraphy and terrestrial ecosystem change during the Late Triassic (Norian–Rhaetian). Review of Palaeobotany and Palynology, 2016, 225, 106-131.	1.5	31
22	Early Late Permian palynostratigraphy and palaeo-biogeography of Vestfjella, Dronning Maud Land, Antarctica. Review of Palaeobotany and Palynology, 1995, 86, 157-173.	1.5	30
23	Deposition, floral composition and sequence stratigraphy of uppermost Triassic (Rhaetian) coastal coals, southern Sweden. International Journal of Coal Geology, 2013, 116-117, 117-134.	5.0	28
24	A Middle–Upper Miocene fluvial–lacustrine rift sequence in theSong Ba Rift, Vietnam: an analogue to oil-prone, small-scale continental rift basins. Petroleum Geoscience, 2007, 13, 145-168.	1.5	27
25	An Early Permian palynoflora from Milorgfjella, Dronning Maud Land, Antarctica. Antarctic Science, 1990, 2, 331-344.	0.9	24
26	The Jurassic–Cretaceous transition of the Fårarp-1 core, southern Sweden: Sedimentological and phytological indications of climate change. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308, 445-475.	2.3	24
27	Permian plant macrofossils from Fossilryggen, Vestfjella, Dronning Maud Land. Antarctic Science, 2005, 17, 73-86.	0.9	23
28	Mantle Dynamics of the Central Atlantic Magmatic Province (CAMP): Constraints from Platinum Group, Gold and Lithophile Elements in Flood Basalts of Morocco. Journal of Petrology, 2019, 60, 1621-1652.	2.8	23
29	Groundwater table fluctuations recorded in zonation of microbial siderites from end-Triassic strata. Sedimentary Geology, 2016, 342, 47-65.	2.1	21
30	Theropod dinosaur teeth from the lowermost Cretaceous Rabekke Formation on Bornholm, Denmark. Geobios, 2008, 41, 253-262.	1.4	19
31	Two-phased Mass Rarity and Extinction in Land Plants During the End-Triassic Climate Crisis. Frontiers in Earth Science, 2021, 9, .	1.8	15
32	The Smithian–Spathian boundary in North Greenland: implications for extreme global climate changes. Geological Magazine, 2020, 157, 1547-1567.	1.5	14
33	Palaeoecology of the Early Permian strata at Heimefrontfjella, Dronning Maud Land, Antarctica. Antarctic Science, 1994, 6, 507-515.	0.9	13
34	Platinum-group elements link the end-Triassic mass extinction and the Central Atlantic Magmatic Province. Scientific Reports, 2020, 10, 3482.	3.3	13
35	Lunnomidinium scaniense Lindström, gen. et sp. nov., a new suessiacean dinoflagellate cyst from the Rhaetian of Scania, southern Sweden. Review of Palaeobotany and Palynology, 2002, 120, 247-261.	1.5	9
36	Palynology of Permian shale, clay and sandstone clasts from the Basen till in northern Vestfjella, Dronning Maud Land. Antarctic Science, 2005, 17, 87-96.	0.9	8

Sofie Lindström

#	Article	IF	CITATIONS
37	An Early Jurassic age for the Puchezhâ€Katunki impact structure (Russia) based on ⁴⁰ Ar/ ³⁹ Ar data and palynology. Meteoritics and Planetary Science, 2019, 54, 1764-1780.	1.6	8
38	Provenance of the Phuquoc Basin fill, southern Indochina: Implication for Early Cretaceous drainage patterns and basin configuration in Southeast Asia. Gondwana Research, 2021, 98, 166-190.	6.0	8
39	Dehydroicetexanes in sediments and crude oils: Possible markers for Cupressoideae. Organic Geochemistry, 2019, 129, 14-23.	1.8	6
40	Triassic lithostratigraphy of the Wandel Sea Basin, North Greenland. Bulletin of the Geological Society of Denmark, 2019, 67, 83-105.	1.1	5
41	A review of the enigmatic microalgaTetranguladiniumYu etÂal. 1983 ex Chen etÂal. 1988; palaeoecology, stratigraphy and palaeogeographical distribution. Palynology, 2013, 37, 48-61.	1.5	4
42	Shocked quartz in distal ejecta from the Ries impact event (Germany) found at ~ 180Âkm distance, near Bernhardzell, eastern Switzerland. Scientific Reports, 2021, 11, 7438.	3.3	3
43	The Permian to Cretaceous succession at Permpasset, Wollaston Forland: the northernmost Permian and Triassic in North–East Greenland. Geological Survey of Denmark and Greenland Bulletin, 0, 47, .	2.0	3
44	The Mesozoic Arctic: warm, green, and highly diverse. Geological Magazine, 2020, 157, 1543-1546.	1.5	2
45	A new vertebrate fossil-bearing layer in the Rhætelv Formation (Kap Stewart Group) of central East Greenland: evidence of a Hettangian marine incursion into the continental Jameson Land Basin. Lethaia, 2022, 55, 1-12.	1.4	1
46	Vietnamese sedimentary basins: geological evolution and petroleum potential. Geological Survey of Denmark and Greenland Bulletin, 0, 20, 91-94.	2.0	1
47	Palynofloral patterns of terrestrial ecosystem change during the end-Triassic event - a review – ERRATUM, Geological Magazine, 2016, 153, 355-355.	1.5	0