
Shixian Lv

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1570022/publications.pdf Version: 2024-02-01

SHIVIANIA

#	Article	IF	CITATIONS
1	Wellâ€Defined Mannosylated Polymer for Peptide Vaccine Delivery with Enhanced Antitumor Immunity. Advanced Healthcare Materials, 2022, 11, e2101651.	3.9	24
2	Applications of Nanobiomaterials in the Therapy and Imaging of Acute Liver Failure. Nano-Micro Letters, 2021, 13, 25.	14.4	62
3	Engineering Nanoâ€Therapeutics to Boost Adoptive Cell Therapy for Cancer Treatment. Small Methods, 2021, 5, e2001191.	4.6	31
4	Design of Polymeric Carriers for Intracellular Peptide Delivery in Oncology Applications. Chemical Reviews, 2021, 121, 11653-11698.	23.0	51
5	Replacement of L-amino acid peptides with D-amino acid peptides mitigates anti-PEG antibody generation against polymer-peptide conjugates in mice. Journal of Controlled Release, 2021, 331, 142-153.	4.8	20
6	Nanotheranostics for the Management of Hepatic Ischemiaâ€Reperfusion Injury. Small, 2021, 17, e2007727.	5.2	51
7	Editorial: Synthesis, Functionalization, and Clinical Translation of Pharmaceutical Biomaterials. Frontiers in Bioengineering and Biotechnology, 2021, 9, 707963.	2.0	1
8	Development of D-melittin polymeric nanoparticles for anti-cancer treatment. Biomaterials, 2021, 277, 121076.	5.7	28
9	Multifunctional hybrid sponge for <i>in situ</i> postoperative management to inhibit tumor recurrence. Biomaterials Science, 2021, 9, 4066-4075.	2.6	15
10	Co-delivery of dual chemo-drugs with precisely controlled, high drug loading polymeric micelles for synergistic anti-cancer therapy. Biomaterials Science, 2020, 8, 949-959.	2.6	39
11	Neutralizing tumor-promoting inflammation with polypeptide-dexamethasone conjugate for microenvironment modulation and colorectal cancer therapy. Biomaterials, 2020, 232, 119676.	5.7	62
12	Nanoparticles exhibit greater accumulation in kidney glomeruli during experimental glomerular kidney disease. Physiological Reports, 2020, 8, e14545.	0.7	20
13	Unimolecular Polypeptide Micelles via Ultrafast Polymerization of <i>N</i> -Carboxyanhydrides. Journal of the American Chemical Society, 2020, 142, 8570-8574.	6.6	49
14	Rationally Designed Polymer Conjugate for Tumor-Specific Amplification of Oxidative Stress and Boosting Antitumor Immunity. Nano Letters, 2020, 20, 2514-2521.	4.5	140
15	Facile Synthesis of Helical Multiblock Copolypeptides: Minimal Side Reactions with Accelerated Polymerization of <i>N</i> -Carboxyanhydrides. ACS Macro Letters, 2019, 8, 1517-1521.	2.3	25
16	Photodynamic therapy-triggered on-demand drug release from ROS-responsive core-cross-linked micelles toward synergistic anti-cancer treatment. Nano Research, 2019, 12, 999-1008.	5.8	41
17	A polypeptide based podophyllotoxin conjugate for the treatment of multi drug resistant breast cancer with enhanced efficiency and minimal toxicity. Acta Biomaterialia, 2018, 73, 388-399.	4.1	40
18	High Drug Loading and Sub-Quantitative Loading Efficiency of Polymeric Micelles Driven by Donor–Receptor Coordination Interactions. Journal of the American Chemical Society, 2018, 140, 1235-1238.	6.6	236

SHIXIAN LV

#	Article	IF	CITATIONS
19	Bortezomib Increases the Cancer Therapeutic Efficacy of Poly(amino acid)–Doxorubicin. ACS Biomaterials Science and Engineering, 2018, 4, 2053-2060.	2.6	4
20	Photodynamic therapy-mediated remote control of chemotherapy toward synergistic anticancer treatment. Nanoscale, 2018, 10, 14554-14562.	2.8	26
21	A versatile platform for surface modification of microfluidic droplets. Lab on A Chip, 2017, 17, 635-639.	3.1	14
22	Inhibiting Solid Tumor Growth In Vivo by Nonâ€Tumorâ€Penetrating Nanomedicine. Small, 2017, 13, 1600954.	5.2	41
23	Investigation on the controlled synthesis and post-modification of poly-[(N-2-hydroxyethyl)-aspartamide]-based polymers. Polymer Chemistry, 2017, 8, 1872-1877.	1.9	11
24	Facile preparation of porous N-doped carbon via a one-step carbonization/activation treatment of polyvinylpyrrolidone/melamine formaldehyde resin with ammonium carbonate and its enhanced electrochemical performances for supercapacitors. Journal of Materials Science: Materials in Electronics, 2017, 28, 8993-9002.	1.1	12
25	Legumain-cleavable 4-arm poly(ethylene glycol)-doxorubicin conjugate for tumor specific delivery and release. Acta Biomaterialia, 2017, 54, 227-238.	4.1	21
26	Synthetic polypeptides: from polymer design to supramolecular assembly and biomedical application. Chemical Society Reviews, 2017, 46, 6570-6599.	18.7	290
27	Enhancing electrochemical performance of LiFePO4 by vacuum-infiltration into expanded graphite for aqueous Li-ion capacitors. Electrochimica Acta, 2017, 253, 413-421.	2.6	11
28	Engineering the Aromaticity of Cationic Helical Polypeptides toward "Self-Activated―DNA/siRNA Delivery. ACS Applied Materials & Interfaces, 2017, 9, 23586-23601.	4.0	37
29	Solid Tumor Therapy Using a Cannon and Pawn Combination Strategy. Theranostics, 2016, 6, 1023-1030.	4.6	24
30	A charge-conversional intracellular-activated polymeric prodrug for tumor therapy. Polymer Chemistry, 2016, 7, 2253-2263.	1.9	32
31	Methoxy poly (ethylene glycol)- <i>block</i> -poly (glutamic acid)- <i>graft</i> -6-(2-nitroimidazole) hexyl amine nanoparticles for potential hypoxia-responsive delivery of doxorubicin. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 40-54.	1.9	34
32	Targeted delivery of cisplatin by LHRH-peptide conjugated dextran nanoparticles suppresses breast cancer growth and metastasis. Acta Biomaterialia, 2015, 18, 132-143.	4.1	96
33	PEG-polypeptide conjugated with LHRH as an efficient vehicle for targeted delivery of doxorubicin to breast cancer. Journal of Controlled Release, 2015, 213, e99.	4.8	7
34	Polypeptide-based combination of paclitaxel and cisplatin for enhanced chemotherapy efficacy and reduced side-effects. Acta Biomaterialia, 2014, 10, 1392-1402.	4.1	113
35	Cisplatin Loaded Methoxy Poly (ethylene glycol)- <i>block</i> -Poly (<scp>L</scp> -glutamic) Tj ETQq1 1 0.78431 Macromolecular Bioscience, 2014, 14, 1337-1345.	4 rgBT /O ⁻ 2.1	verlock 10 T 34
36	Synergistic Antitumor Effects of Doxorubicinâ€Loaded Carboxymethyl Cellulose Nanoparticle in Combination with Endostar for Effective Treatment of Nonâ€Smallâ€Cell Lung Cancer. Advanced Healthcare Materials, 2014, 3, 1877-1888.	3.9	33

Shixian Lv

#	Article	IF	CITATIONS
37	LHRH-peptide conjugated dextran nanoparticles for targeted delivery of cisplatin to breast cancer. Journal of Materials Chemistry B, 2014, 2, 3490.	2.9	39
38	Well-defined polymer-drug conjugate engineered with redox and pH-sensitive release mechanism for efficient delivery of paclitaxel. Journal of Controlled Release, 2014, 194, 220-227.	4.8	169
39	Charge-Conversional PEG-Polypeptide Polyionic Complex Nanoparticles from Simple Blending of a Pair of Oppositely Charged Block Copolymers as an Intelligent Vehicle for Efficient Antitumor Drug Delivery. Molecular Pharmaceutics, 2014, 11, 1562-1574.	2.3	55
40	Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer. Biomaterials, 2014, 35, 6118-6129.	5.7	304
41	Anti-tumor efficacy of c(RGDfK)-decorated polypeptide-based micelles co-loaded with docetaxel and cisplatin. Biomaterials, 2014, 35, 3005-3014.	5.7	126
42	Cisplatin crosslinked pH-sensitive nanoparticles for efficient delivery of doxorubicin. Biomaterials, 2014, 35, 3851-3864.	5.7	244
43	A co-delivery system based on paclitaxel grafted mPEG-b-PLG loaded with doxorubicin: Preparation, in vitro and in vivo evaluation. International Journal of Pharmaceutics, 2014, 471, 412-420.	2.6	38
44	Polypeptide/Doxorubicin Hydrochloride Polymersomes Prepared Through Organic Solvent-free Technique as a Smart Drug Delivery Platform. Macromolecular Bioscience, 2013, 13, 1150-1162.	2.1	37
45	Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy. Acta Biomaterialia, 2013, 9, 9330-9342.	4.1	180
46	Nanoscaled Poly(<scp>l</scp> -glutamic acid)/Doxorubicin-Amphiphile Complex as pH-responsive Drug Delivery System for Effective Treatment of Nonsmall Cell Lung Cancer. ACS Applied Materials & Interfaces, 2013, 5, 1781-1792.	4.0	190
47	Tunable pHâ€Sensitive Poly(<i>β</i> â€amino ester)s Synthesized from Primary Amines and Diacrylates for Intracellular Drug Delivery. Macromolecular Bioscience, 2012, 12, 1375-1383.	2.1	50