
Aimin Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1569188/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highâ€Internalâ€Phase Pickering Emulsions Stabilized Solely by Peanutâ€Proteinâ€Isolate Microgel Particles with Multiple Potential Applications. Angewandte Chemie - International Edition, 2018, 57, 9274-9278.	13.8	249
2	Pickering and high internal phase Pickering emulsions stabilized by protein-based particles: A review of synthesis, application and prospective. Food Hydrocolloids, 2020, 109, 106117.	10.7	175
3	Preparation of starch-based nanoparticles through high-pressure homogenization and miniemulsion cross-linking: Influence of various process parameters on particle size and stability. Carbohydrate Polymers, 2011, 83, 1604-1610.	10.2	172
4	Cultivation of a microalga Chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process. Bioresource Technology, 2012, 126, 354-357.	9.6	135
5	Emulsifying properties and structure changes of spray and freeze-dried peanut protein isolate. Journal of Food Engineering, 2016, 170, 33-40.	5.2	117
6	Characterization of starch films containing starch nanoparticles. Carbohydrate Polymers, 2013, 96, 593-601.	10.2	108
7	β-Glucans: Relationships between Modification, Conformation and Functional Activities. Molecules, 2017, 22, 257.	3.8	107
8	The Complete Mitochondrial Genome and Novel Gene Arrangement of the Unique-Headed Bug Stenopirates sp. (Hemiptera: Enicocephalidae). PLoS ONE, 2012, 7, e29419.	2.5	100
9	The Complete Mitochondrial Genome of the Damsel Bug <i>Alloeorhynchus bakeri</i> (Hemiptera:) Tj ETQq1 1	0.784314 6.4	rgBT /Overlo
10	Formulation of water-in-oil-in-water (W/O/W) emulsions containing trans-resveratrol. RSC Advances, 2017, 7, 35917-35927.	3.6	71
11	Preparation of resveratrol-enriched and poor allergic protein peanut sprout from ultrasound treated peanut seeds. Ultrasonics Sonochemistry, 2016, 28, 334-340.	8.2	61
12	Comparative Mitogenomic Analysis of Damsel Bugs Representing Three Tribes in the Family Nabidae (Insecta: Hemiptera). PLoS ONE, 2012, 7, e45925.	2.5	56
13	The effect of annealing and cryoprotectants on the properties of vacuum-freeze dried starch nanoparticles. Carbohydrate Polymers, 2012, 88, 1334-1341.	10.2	52
14	Characterization of starch films containing starch nanoparticles. Part 2: Viscoelasticity and creep properties. Carbohydrate Polymers, 2013, 96, 602-610.	10.2	51
15	Isolation, Purification and Molecular Mechanism of a Peanut Protein-Derived ACE-Inhibitory Peptide. PLoS ONE, 2014, 9, e111188.	2.5	51
16	ldentification of chemical ingredients of peanut stems and leaves extracts using UPLCâ€QTOFâ€MS coupled with novel informatics UNIFI platform. Journal of Mass Spectrometry, 2016, 51, 1157-1167.	1.6	47
17	The Effect of Microwave Pretreatment on Micronutrient Contents, Oxidative Stability and Flavor Quality of Peanut Oil. Molecules, 2019, 24, 62.	3.8	47
18	Effects of transglutaminase catalyzed crosslinking on physicochemical characteristics of arachin and conarachin-rich peanut protein fractions. Food Research International, 2014, 62, 84-90.	6.2	46

Аімін Shi

#	Article	IF	CITATIONS
19	Effects of proteolysis and transglutaminase crosslinking on physicochemical characteristics of walnut protein isolate. LWT - Food Science and Technology, 2018, 97, 662-667.	5.2	45
20	Effect of electrostatically charged and neutral polysaccharides onÂtheÂrheological characteristics of peanut protein isolate after high-pressure homogenization. Food Hydrocolloids, 2018, 77, 329-335.	10.7	44
21	Swine Manure-Based Pilot-Scale Algal Biomass Production System for Fuel Production and Wastewater Treatment—a Case Study. Applied Biochemistry and Biotechnology, 2014, 172, 1390-1406.	2.9	42
22	Highâ€Internalâ€Phase Pickering Emulsions Stabilized Solely by Peanutâ€Proteinâ€Isolate Microgel Particles with Multiple Potential Applications. Angewandte Chemie, 2018, 130, 9418-9422.	2.0	42
23	Rearrangement of mitochondrial tRNA genes in flat bugs (Hemiptera: Aradidae). Scientific Reports, 2016, 6, 25725.	3.3	36
24	High Oleic Acid Peanut Oil and Extra Virgin Olive Oil Supplementation Attenuate Metabolic Syndrome in Rats by Modulating the Gut Microbiota. Nutrients, 2019, 11, 3005.	4.1	36
25	Peanut Allergy: Characteristics and Approaches for Mitigation. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1361-1387.	11.7	35
26	Polyphenolic Proanthocyanidin-B2 suppresses proliferation of liver cancer cells and hepatocellular carcinogenesis through directly binding and inhibiting AKT activity. Redox Biology, 2020, 37, 101701.	9.0	35
27	Rheological properties of suspensions containing cross-linked starch nanoparticles prepared by spray and vacuum freeze drying methods. Carbohydrate Polymers, 2012, 90, 1732-1738.	10.2	31
28	Relationship of chemical properties of different peanut varieties to peanut butter storage stability. Journal of Integrative Agriculture, 2018, 17, 1003-1010.	3.5	29
29	Effects of High Hydrostatic Pressure on the Conformational Structure and Gel Properties of Myofibrillar Protein and Meat Quality: A Review. Foods, 2021, 10, 1872.	4.3	25
30	Suspensions of vacuum-freeze dried starch nanoparticles: Influence of NaCl on their rheological properties. Carbohydrate Polymers, 2013, 94, 782-790.	10.2	24
31	Preparation of nanoliposome loaded with peanut peptide fraction: stability and bioavailability. Food and Function, 2016, 7, 2034-2042.	4.6	24
32	Optimisation for resveratrol accumulation during peanut germination with phenylalanine feeding & ultrasoundâ€treatment using response surface methodology. International Journal of Food Science and Technology, 2016, 51, 938-945.	2.7	23
33	Spray drying of starch submicron particles prepared by high pressure homogenization and mini-emulsion cross-linking. Journal of Food Engineering, 2012, 113, 399-407.	5.2	22
34	The complete mitochondrial genome of the flat bug Aradacanthia heissi (Hemiptera: Aradidae). Zootaxa, 2012, 3238, 23.	0.5	22
35	Multivesicular Liposomes for the Sustained Release of Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptides from Peanuts: Design, Characterization, and In Vitro Evaluation. Molecules, 2019, 24, 1746.	3.8	20
36	The effect of NaCl on the rheological properties of suspension containing spray dried starch nanoparticles. Carbohydrate Polymers, 2012, 90, 1530-1537.	10.2	19

Аімін Shi

#	Article	IF	CITATIONS
37	Rapid and visual measurement of fat content in peanuts by using the hyperspectral imaging technique with chemometrics. Analytical Methods, 2016, 8, 7482-7492.	2.7	19
38	Effect of drying and loading methods on the release behavior of ciprofloxacin from starch nanoparticles. International Journal of Biological Macromolecules, 2016, 87, 55-61.	7.5	19
39	Highâ€pressure microfluidisation pretreatment disaggregate peanut protein isolates to prepare antihypertensive peptide fractions. International Journal of Food Science and Technology, 2017, 52, 1760-1769.	2.7	19
40	Effects of microfluidization with ionic liquids on the solubilization and structure of β-d-glucan. International Journal of Biological Macromolecules, 2016, 84, 394-401.	7.5	18
41	Production and evaluation of biodiesel and bioethanol from high oil corn using three processing routes. Bioresource Technology, 2013, 128, 100-106.	9.6	17
42	Effect of xylose on the structural and physicochemical properties of peanut isolated protein based films. RSC Advances, 2017, 7, 52357-52365.	3.6	16
43	Effect of glycosylation with xylose on the mechanical properties and water solubility of peanut protein films. Journal of Food Science and Technology, 2015, 52, 6242-6253.	2.8	15
44	Review on the processing characteristics of cereals and oilseeds and their processing suitability evaluation technology. Journal of Integrative Agriculture, 2017, 16, 2886-2897.	3.5	15
45	Sedative–hypnotic and anxiolytic effects and the mechanism of action of aqueous extracts of peanut stems and leaves in mice. Journal of the Science of Food and Agriculture, 2018, 98, 4885-4894.	3.5	15
46	Rheological characteristics and chain conformation of mannans obtained from Saccharomyces cerevisiae. International Journal of Biological Macromolecules, 2018, 107, 2404-2411.	7.5	15
47	Separation and identification of neutral oligosaccharides with prebiotic activities from apple pectin. Food Hydrocolloids, 2021, 121, 107062.	10.7	14
48	Study on Key Aroma Compounds and Its Precursors of Peanut Oil Prepared with Normal- and High-Oleic Peanuts. Foods, 2021, 10, 3036.	4.3	14
49	Preparation and characterisation of films from xyloseâ€glycosylated peanut protein isolate powder. International Journal of Food Science and Technology, 2015, 50, 1538-1544.	2.7	13
50	Complete mitochondrial genome of the flat bug <i>Brachyrhynchus hsiaoi</i> (Hemiptera: Aradidae). Mitochondrial DNA, 2016, 27, 14-15.	0.6	13
51	Peanut meal as plywood adhesives: preparation and characterization. Journal of Adhesion Science and Technology, 2018, 32, 2450-2463.	2.6	13
52	Peanut By-Products Utilization Technology. , 2016, , 211-325.		12
53	Improving resveratrol bioavailability using water-in-oil-in-water (W/O/W) emulsion: Physicochemical stability, in vitro digestion resistivity and transport properties. Journal of Functional Foods, 2021, 87, 104717.	3.4	12
54	Recent Advances on Pickering Emulsions Stabilized by Diverse Edible Particles: Stability Mechanism and Applications. Frontiers in Nutrition, 2022, 9, .	3.7	11

Αιμιν Shi

#	Article	IF	CITATIONS
55	Extraction, Purification and Primary Characterization of Polysaccharides from Defatted Peanut (Arachis hypogaea) Cakes. Molecules, 2016, 21, 716.	3.8	10
56	Optimising germinated conditions to enhance yield of resveratrol content in peanut sprout using response surface methodology. International Journal of Food Science and Technology, 2016, 51, 1754-1761.	2.7	10
57	Effect of high-moisture extrusion and addition of transglutaminase on major peanut allergens content extracted by three step sequential method. Food Chemistry, 2022, 385, 132569.	8.2	9
58	Effect of Hydrothermal Cooking Combined with High-Pressure Homogenization and Enzymatic Hydrolysis on the Solubility and Stability of Peanut Protein at Low pH. Foods, 2022, 11, 1289.	4.3	9
59	Synthesis and characterization of calcium-induced peanut protein isolate nanoparticles. RSC Advances, 2017, 7, 53247-53254.	3.6	8
60	First Report of Complete Mitochondrial Genome in the Tribes Coomaniellini and Dicercini (Coleoptera: Buprestidae) and Phylogenetic Implications. Genes, 2022, 13, 1074.	2.4	8
61	Design and beam test of a high intensity continuous wave RFQ accelerator. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 763, 383-387.	1.6	7
62	Flavonoidâ€Like Components of Peanut Stem and Leaf Extract Promote Sleep by Decreasing Neuronal Excitability. Molecular Nutrition and Food Research, 2022, 66, e2100210.	3.3	7
63	Multi-physics analysis of the RFQ for Injector Scheme II of C-ADS driver linac. Chinese Physics C, 2014, 38, 107005.	3.7	4
64	Peanut Protein Processing Technology. , 2016, , 83-209.		4
65	The complete mitochondrial genome of the jewel beetle, <i>Anthaxia chinensis</i> (Coleoptera:) Tj ETQq1 1 0.7	84314 rgB 0.4	T /Overlock
66	Quality Formation of Adzuki Bean Baked: From Acrylamide to Volatiles under Microwave Heating and Drum Roasting. Foods, 2021, 10, 2762.	4.3	4
67	Janus particles: A review of their applications in food and medicine. Critical Reviews in Food Science and Nutrition, 2023, 63, 10093-10104.	10.3	4
68	Study of influence of radial matcher section end shape on RFQ cavity frequency. Chinese Physics C, 2014, 38, 077007.	3.7	3
69	Peanut Processing Quality Evaluation Technology. , 2016, , 23-61.		3
70	Frequency tuning with RFQ temperature in China ADS Injector II. Chinese Physics C, 2016, 40, 037003.	3.7	3
71	An improved method for the measurement of 3â€monochloropropanediol esters by matrix solidâ€phase dispersionÂsupported liquid–liquid extraction. International Journal of Food Science and Technology, 2017, 52, 2404-2411.	2.7	3
72	Design of the new couplers for C-ADS RFQ. Chinese Physics C, 2015, 39, 047004.	3.7	2

Аімін Shi

#	Article	IF	CITATIONS
73	bioavailability of resveratrol encapsulated in liposomes: influence of chitosan coating and liposome compositions. Journal of Controlled Release, 2017, 259, e172-e173.	9.9	2
74	Directional coupler-based measurement of high-frequency power. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2011, 23, 1061-1064.	0.0	2
75	Design study of the SSC-LINAC re-buncher. Chinese Physics C, 2013, 37, 027002.	3.7	1
76	Peanut Allergy. , 2016, , 327-341.		0
77	Rheology instruments for food quality evaluation. , 2019, , 465-490.		0
78	Improving the functionality and bioactivity in wheat bran. CFW Plexus, 2012, , .	0.0	0
79	Radio frequency characteristic measurements and power conditioning of DPIS-RFQ at IMP. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2013, 25, 989-993.	0.0	0