
## **Odair Pastor Ferreira**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1568784/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Evaluation of boron removal from water by hydrotalcite-like compounds. Chemosphere, 2006, 62,<br>80-88.                                                                                                                            | 4.2 | 158       |
| 2  | 1,2-Dichlorobenzene Interacting with Carbon Nanotubes. Nano Letters, 2004, 4, 1285-1288.                                                                                                                                           | 4.5 | 153       |
| 3  | Thermal decomposition and structural reconstruction effect on Mg–Fe-based hydrotalcite compounds. Journal of Solid State Chemistry, 2004, 177, 3058-3069.                                                                          | 1.4 | 137       |
| 4  | Alkali metal intercalated titanate nanotubes: A vibrational spectroscopy study. Vibrational Spectroscopy, 2011, 55, 183-187.                                                                                                       | 1.2 | 95        |
| 5  | Unveiling the structure and composition of titanium oxide nanotubes through ion exchange chemical reactions and thermal decomposition processes. Journal of the Brazilian Chemical Society, 2006, 17, 393-402.                     | 0.6 | 90        |
| 6  | Raman Spectra in Vanadate Nanotubes Revisited. Nano Letters, 2004, 4, 2099-2104.                                                                                                                                                   | 4.5 | 81        |
| 7  | Structural, morphological and vibrational properties of titanate nanotubes and nanoribbons. Journal of the Brazilian Chemical Society, 2009, 20, 167-175.                                                                          | 0.6 | 58        |
| 8  | Release of nutrients and organic carbon in different soil types from hydrochar obtained using sugarcane bagasse and vinasse. Geoderma, 2019, 334, 24-32.                                                                           | 2.3 | 58        |
| 9  | Inclusion complexes of pyrimethamine in 2-hydroxypropyl-β-cyclodextrin: Characterization, phase solubility and molecular modelling. Bioorganic and Medicinal Chemistry, 2007, 15, 5752-5759.                                       | 1.4 | 56        |
| 10 | Decorating Titanate Nanotubes with CeO <sub>2</sub> Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 20234-20239.                                                                                                        | 1.5 | 56        |
| 11 | Biomorphic activated porous carbons with complex microstructures from lignocellulosic residues.<br>Microporous and Mesoporous Materials, 2008, 107, 276-285.                                                                       | 2.2 | 55        |
| 12 | Titanate nanotubes as acid catalysts for acetalization of glycerol with acetone: Influence of the<br>synthesis time and the role of structure on the catalytic performance. Chemical Engineering Journal,<br>2017, 313, 1454-1467. | 6.6 | 54        |
| 13 | Structural and electrochemical properties of babassu coconut mesocarp-generated activated carbon and few-layer graphene. Carbon, 2019, 145, 175-186.                                                                               | 5.4 | 52        |
| 14 | Structural and thermal properties of Co–Cu–Fe hydrotalcite-like compounds. Journal of Solid State<br>Chemistry, 2005, 178, 142-152.                                                                                                | 1.4 | 51        |
| 15 | Humic extracts of hydrochar and Amazonian Dark Earth: Molecular characteristics and effects on maize seed germination. Science of the Total Environment, 2020, 708, 135000.                                                        | 3.9 | 48        |
| 16 | Transforming Sugarcane Bagasse and Vinasse Wastes into Hydrochar in the Presence of Phosphoric<br>Acid: An Evaluation of Nutrient Contents and Structural Properties. Waste and Biomass Valorization,<br>2017, 8, 1139-1151.       | 1.8 | 42        |
| 17 | Effect of the reaction medium on the immobilization of nutrients in hydrochars obtained using sugarcane industry residues. Bioresource Technology, 2017, 237, 213-221.                                                             | 4.8 | 40        |
| 18 | Deposition of copper sulfide on modified low-density polyethylene surface: morphology and electrical characterization. Applied Surface Science, 2002, 202, 223-231.                                                                | 3.1 | 38        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Ni–Fe and Co–Fe binary oxides derived from layered double hydroxides and their catalytic evaluation for hydrogen production. Catalysis Today, 2015, 250, 155-165.                                                                  | 2.2 | 38        |
| 20 | Toxicity evaluation of process water from hydrothermal carbonization of sugarcane industry by-products. Environmental Science and Pollution Research, 2019, 26, 27579-27589.                                                       | 2.7 | 37        |
| 21 | Humic-like acids from hydrochars: Study of the metal complexation properties compared with humic acids from anthropogenic soils using PARAFAC and time-resolved fluorescence. Science of the Total Environment, 2020, 722, 137815. | 3.9 | 36        |
| 22 | In situ growth of manganese oxide nanosheets over titanium dioxide nanofibers and their<br>performance as active material for supercapacitor. Journal of Colloid and Interface Science, 2019, 555,<br>373-382.                     | 5.0 | 35        |
| 23 | Structural and electrochromic study of polypyrrole synthesized with azo and anthraquinone dyes.<br>Journal of Electroanalytical Chemistry, 2006, 591, 27-32.                                                                       | 1.9 | 34        |
| 24 | Metal cations intercalated titanate nanotubes as catalysts for α,β unsaturated esters production.<br>Applied Catalysis A: General, 2013, 454, 74-80.                                                                               | 2.2 | 31        |
| 25 | Study of the growth of CeO2 nanoparticles onto titanate nanotubes. Journal of Physics and Chemistry of Solids, 2015, 87, 213-220.                                                                                                  | 1.9 | 31        |
| 26 | CO2 Sensing by in-situ Raman spectroscopy using activated carbon generated from mesocarp of babassu coconut. Vibrational Spectroscopy, 2018, 98, 111-118.                                                                          | 1.2 | 31        |
| 27 | One-Dimensional Nanostructures from Layered Manganese Oxide. Crystal Growth and Design, 2006, 6, 601-606.                                                                                                                          | 1.4 | 30        |
| 28 | Machine Learning and Natural Language Processing Enable a Data-Oriented Experimental Design<br>Approach for Producing Biochar and Hydrochar from Biomass. Chemistry of Materials, 2022, 34,<br>979-990.                            | 3.2 | 28        |
| 29 | Pressure-induced radial collapse in few-wall carbon nanotubes: A combined theoretical and experimental study. Carbon, 2017, 125, 429-436.                                                                                          | 5.4 | 27        |
| 30 | Synthesis of silver-cerium titanate nanotubes and their surface properties and antibacterial applications. Materials Science and Engineering C, 2020, 115, 111051.                                                                 | 3.8 | 26        |
| 31 | Strategic design of magnetic carbonaceous nanocomposites and its application as multifunctional adsorbent. Carbon, 2020, 161, 758-771.                                                                                             | 5.4 | 25        |
| 32 | Amino-functionalized titanate nanotubes for highly efficient removal of anionic dye from aqueous<br>solution. Applied Surface Science, 2020, 512, 145659.                                                                          | 3.1 | 21        |
| 33 | Humic extracts from hydrochar and Amazonian Anthrosol: Molecular features and metal binding properties using EEM-PARAFAC and 2D FTIR correlation analyses. Chemosphere, 2020, 256, 127110.                                         | 4.2 | 21        |
| 34 | Atomic-layered MoS2 on SiO2 under high pressure: Bimodal adhesion and biaxial strain effects.<br>Physical Review Materials, 2017, 1, .                                                                                             | 0.9 | 21        |
| 35 | Interaction of sodium titanate nanotubes with organic acids and base: chemical, structural and morphological stabilities. Journal of the Brazilian Chemical Society, 2010, 21, 1341-1348.                                          | 0.6 | 20        |
| 36 | Electrical, spectroscopic, and thermal properties of blends formed by PEDOT, PVC, and PEO. Journal of<br>Applied Polymer Science, 2005, 96, 1710-1715.                                                                             | 1.3 | 19        |

| #  | Article                                                                                                                                                                                                               | IF                | CITATIONS           |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|
| 37 | Photoluminescence Enhancement of Titanate Nanotubes by Insertion of Rare Earth Ions in Their<br>Interlayer Spaces. Journal of Nanomaterials, 2017, 2017, 1-9.                                                         | 1.5               | 19                  |
| 38 | Highlighting the mechanisms of the titanate nanotubes to titanate nanoribbons transformation.<br>Journal of Nanoparticle Research, 2011, 13, 3259-3265.                                                               | 0.8               | 17                  |
| 39 | Titanate-based one-dimensional nano-heterostructure: Study of hydrothermal reaction parameters for improved photocatalytic application. Solid State Sciences, 2019, 98, 106043.                                       | 1.5               | 16                  |
| 40 | One-Pot Synthesis of Titanate Nanotubes Decorated with Anatase Nanoparticles Using a<br>Microwave-Assisted Hydrothermal Reaction. Journal of Nanomaterials, 2019, 2019, 1-10.                                         | 1.5               | 16                  |
| 41 | Ecomateriais: desenvolvimento e aplicação de materiais porosos funcionais para proteção ambiental.<br>Quimica Nova, 2007, 30, 464-467.                                                                                | 0.3               | 15                  |
| 42 | Morphological analysis of soil particles at multiple length-scale reveals nutrient stocks of<br>Amazonian Anthrosols. Geoderma, 2018, 311, 58-66.                                                                     | 2.3               | 15                  |
| 43 | Silver nanoparticles (AgNPs) internalization and passage through the Lactuca sativa (Asteraceae)<br>outer cell wall. Functional Plant Biology, 2021, 48, 1113-1123.                                                   | 1.1               | 15                  |
| 44 | Hydrochar from sugarcane industry by-products: assessment of its potential use as a soil conditioner by germination and growth of maize. Chemical and Biological Technologies in Agriculture, 2021, 8, .              | 1.9               | 14                  |
| 45 | Large-Field Electron Imaging and X-ray Elemental Mapping Unveil the Morphology, Structure, and<br>Fractal Features of a Cretaceous Fossil at the Centimeter Scale. Analytical Chemistry, 2015, 87,<br>10088-10095.    | 3.2               | 13                  |
| 46 | Template conversion of MoO <sub>3</sub> to MoS <sub>2</sub> nanoribbons: synthesis and electrochemical properties. RSC Advances, 2018, 8, 30346-30353.                                                                | 1.7               | 13                  |
| 47 | On the formation of protein corona on colloidal nanoparticles stabilized by depletant polymers.<br>Materials Science and Engineering C, 2019, 105, 110080.                                                            | 3.8               | 13                  |
| 48 | Fluorescence Based Platform to Discriminate Protein Using Carbon Quantum Dots. ChemistrySelect, 2019, 4, 5619-5627.                                                                                                   | 0.7               | 13                  |
| 49 | Toxic effects of silver nanoparticles on the germination and root development of lettuce (Lactuca) Tj ETQq1 1 0                                                                                                       | .784314 rg<br>0.3 | gBT /Overlock<br>12 |
| 50 | Homogeneously dispersed CeO2 nanoparticles on exfoliated hexaniobate nanosheets. Journal of<br>Physics and Chemistry of Solids, 2017, 111, 335-342.                                                                   | 1.9               | 11                  |
| 51 | Fulvic acids from Amazonian anthropogenic soils: Insight into the molecular composition and copper<br>binding properties using fluorescence techniques. Ecotoxicology and Environmental Safety, 2020, 205,<br>111173. | 2.9               | 11                  |
| 52 | Insights on Molecular Characteristics of Hydrochars by 13C-NMR and Off-Line TMAH-GC/MS and Assessment of Their Potential Use as Plant Growth Promoters. Molecules, 2021, 26, 1026.                                    | 1.7               | 11                  |
| 53 | Vibrational and thermal properties of crystalline topiramate. Journal of the Brazilian Chemical Society, 2008, 19, 1607-1613.                                                                                         | 0.6               | 10                  |
| 54 | Hydrochar obtained with by-products from the sugarcane industry: Molecular features and effects of extracts on maize seed germination. Journal of Environmental Management, 2021, 281, 111878.                        | 3.8               | 10                  |

Odair Pastor Ferreira

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Titanate nanotubes: Effect of rare earth insertion, thermal treatment and their optical properties.<br>Optical Materials, 2022, 127, 112302.                                                                                                                     | 1.7 | 10        |
| 56 | Hydrochar as protein support: preservation of biomolecule properties with non-covalent immobilization. Journal of Materials Science, 2017, 52, 13378-13389.                                                                                                      | 1.7 | 8         |
| 57 | Application of Carbon-Based Nanomaterials as Fertilizers in Soils. , 2019, , 305-333.                                                                                                                                                                            |     | 8         |
| 58 | Organophosphorus halloysite nanotubes as adsorbent for lead preconcentration in wine and grape juice. Applied Clay Science, 2021, 200, 105912.                                                                                                                   | 2.6 | 8         |
| 59 | Hydrothermal carbonization of sugarcane industry by-products and process water reuse: structural, morphological, and fuel properties of hydrochars. Biomass Conversion and Biorefinery, 2022, 12, 153-161.                                                       | 2.9 | 8         |
| 60 | Recycling dodecylamine intercalated vanadate nanotubes. Journal of Nanoparticle Research, 2010, 12, 367-372.                                                                                                                                                     | 0.8 | 7         |
| 61 | Factorial design of experiments for extraction and screening analysis of organic compounds in<br>hydrochar and its process water of sugar cane bagasse and vinasse. Biomass Conversion and<br>Biorefinery, 2022, 12, 81-90.                                      | 2.9 | 7         |
| 62 | Hydrothermal Carbonization of Waste Babassu Coconut Biomass for Solid Fuel Production. Revista<br>Virtual De Quimica, 2019, 11, 626-641.                                                                                                                         | 0.1 | 7         |
| 63 | Carbon-dots from babassu coconut (Orbignya speciosa) biomass: Synthesis, characterization, and<br>toxicity to Daphnia magna. Carbon Trends, 2021, 5, 100133.                                                                                                     | 1.4 | 7         |
| 64 | Silica Nanoparticles and Surface Silanization for the Fabrication of Water-Repellent Cotton Fibers.<br>ACS Applied Nano Materials, 2022, 5, 4634-4647.                                                                                                           | 2.4 | 7         |
| 65 | Probing the thermal decomposition process of layered double hydroxides through in situ 57Fe<br>Mössbauer and in situ X-ray diffraction experiments. Journal of Materials Science, 2007, 42, 534-538.                                                             | 1.7 | 6         |
| 66 | Performance Evaluation of Titanate Nanotubes and Nanoribbons Deposited by Electrophoresis in<br>Photoelectrodes of Dye-Sensitized Solar Cells. Materials Research, 2018, 21, .                                                                                   | 0.6 | 6         |
| 67 | Semivolatile organic compounds in the products from hydrothermal carbonisation of sugar cane<br>bagasse and vinasse by gas chromatography-mass spectrometry. Bioresource Technology Reports,<br>2020, 12, 100594.                                                | 1.5 | 6         |
| 68 | Non-covalent interaction of benzonitrile with single-walled carbon nanotubes. Journal of Nanoparticle Research, 2009, 11, 2163-2170.                                                                                                                             | 0.8 | 5         |
| 69 | Raman spectroscopy for probing covalent functionalization of single-wall carbon nanotubes bundles with gold nanoparticles. Journal of Nanoparticle Research, 2014, 16, 1.                                                                                        | 0.8 | 5         |
| 70 | Ordered porous carbons from hydrothermally treated biomass: Effects of the thermal treatments on the structure and porosity. Vibrational Spectroscopy, 2020, 111, 103175.                                                                                        | 1.2 | 5         |
| 71 | Chelating properties of humic-like substances obtained from process water of hydrothermal carbonization. Environmental Technology and Innovation, 2021, 23, 101688.                                                                                              | 3.0 | 5         |
| 72 | Valorisation of sugar cane bagasse using hydrothermal carbonisation in the preparation of magnetic<br>carbon nanocomposite in a singleâ€step synthesis applied to chromium adsorption. Journal of Chemical<br>Technology and Biotechnology, 2022, 97, 2032-2046. | 1.6 | 4         |

| #  | Article                                                                                                                                                                                                                                                  | IF               | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| 73 | Carbon Nanotubes: From Synthesis to Genotoxicity. Nanomedicine and Nanotoxicology, 2014, , 125-152.                                                                                                                                                      | 0.1              | 3         |
| 74 | Resource Letter N-1: Nanotechnology. American Journal of Physics, 2014, 82, 8-22.                                                                                                                                                                        | 0.3              | 3         |
| 75 | Nanostructures of sodium titanate/zirconium oxide. Journal of Nanoparticle Research, 2010, 12, 2355-2361.                                                                                                                                                | 0.8              | 2         |
| 76 | New Proposal for Sugarcane Vinasse Treatment by Hydrothermal Carbonization: An Evaluation of Solid and Liquid Products. Journal of the Brazilian Chemical Society, 0, , .                                                                                | 0.6              | 2         |
| 77 | Synthesis of Novel Catalytic Materials: Titania Nanotubes and Transition Metal Carbides, Nitrides, and Sulfides. , 2019, , 13-40.                                                                                                                        |                  | 2         |
| 78 | DISPONIBILIDADE DE NUTRIENTES E CARBONO ORGÃ,NICO EM SOLOS CONTENDO CARVÃO HIDROTÉRMICO<br>LAVADO E NÃO LAVADO E COMPARAÇÃO COM SOLOS ANTROPOGÊNICOS. Quimica Nova, 2019, , .                                                                            | О <sub>0.3</sub> | 2         |
| 79 | Carbon nanotube-doped tellurite glasses. , 2008, , .                                                                                                                                                                                                     |                  | 1         |
| 80 | Photoelectrodes with titanate nanotubes sensitized by mesoporphyrin derivative from cashew nut shell. Revista Materia, 2019, 24, .                                                                                                                       | 0.1              | 1         |
| 81 | Hydrochars produced with by-products from the sucroenergetic industry: a study of extractor solutions on nutrient and organic carbon release. Environmental Science and Pollution Research, 2019, 26, 9137-9145.                                         | 2.7              | 1         |
| 82 | Chemical and Spectroscopic Characteristics of Anthrosol (Amazonian Dark Earth) and Surrounding<br>Soil from the Brazilian Amazon Forest: Evaluation of Mineral and Organic Matter Content by Depth.<br>Journal of the Brazilian Chemical Society, 0, , . | 0.6              | 0         |
| 83 | Increase of Fluorescence of Humic-Like Substances in Interaction with Cd(II): a Photoinduced Charge<br>Transfer Approach. Journal of Fluorescence, 0, , .                                                                                                | 1.3              | Ο         |