Lunxiang Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1568777/publications.pdf

Version: 2024-02-01

759233 752698 20 535 12 20 h-index citations g-index papers 20 20 20 786 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Novel A-ï€-D-ï€-A-type BODIPY dyads as small-molecule donors for solution-processed organic solar cells. Journal of Materials Chemistry C, 2022, 10, 3248-3258.	5 . 5	12
2	A′–A–݀–D–݀–A–A′ extended small-molecule photovoltaic donor based on fluorene-diketopyrrolopyrrole with an end-group fluorination effect. Materials Advances, 2022, 3, 6496-6505.	5.4	4
3	Effective structural modifications enabled by end-capped effects based on fluorene-core donor, with high open-circuit voltage in organic photovoltaic devices. Dyes and Pigments, 2020, 183, 108709.	3.7	5
4	D–A–Aâ€2-type asymmetric small molecules based on triphenylamine-diketopyrrolopyrrole/5,6-difluoro-2,1,3-benzothiadiazole backbone for organic photovoltaic materials. New Journal of Chemistry, 2020, 44, 13319-13329.	2.8	4
5	Design and structural modification of narrow-bandgap small molecules based on asymmetric porphyrin-diketopyrrolopyrrole backbone for solution-processed organic solar cells. Dyes and Pigments, 2020, 176, 108211.	3.7	14
6	Novel Small Four-armed Molecules with Triphenylamine-bridged Structure for Organic Solar Cells Featuring High Open-circuit Voltage. Chemical Research in Chinese Universities, 2019, 35, 1032-1039.	2.6	2
7	Design of organic small molecules for photovoltaic application with high open-circuit voltage (<i>V</i> _{oc}). Journal of Materials Chemistry C, 2019, 7, 2487-2521.	5.5	57
8	Efficient design and structural modifications for tuning the photoelectric properties of small-molecule acceptors in organic solar cells. New Journal of Chemistry, 2019, 43, 6577-6586.	2.8	13
9	Tuning photovoltaic performance of DOBT-based dyes via molecular design with ethynyl-linker and terminal electron-donating segment. Dyes and Pigments, 2017, 140, 203-211.	3.7	24
10	Efficient small molecule photovoltaic donor based on 2,3-diphenyl-substituted quinoxaline core for solution-processed organic solar cells. RSC Advances, 2017, 7, 23779-23786.	3 . 6	9
11	Narrow band gap isoindigo-based small molecules for solution-processed organic solar cells with high open-circuit voltage. Synthetic Metals, 2016, 220, 448-454.	3.9	6
12	Ï€-Linkage effect of push-pull-structure organic small molecules for photovoltaic application. Science China Materials, 2016, 59, 371-388.	6.3	16
13	Tuning the photovoltaic performance of BT-TPA chromophore based solution-processed solar cells through molecular design incorporating of bithiophene unit and fluorine-substitution. Dyes and Pigments, 2015, 118, 37-44.	3.7	22
14	D–π–A–π–D-type low band gap diketopyrrolopyrrole based small molecules containing an ethynyl-linkage: synthesis and photovoltaic properties. RSC Advances, 2015, 5, 31606-31614.	3 . 6	37
15	High open-circuit voltage of the solution-processed organic solar cells based on benzothiadiazole–triphenylamine small molecules incorporating π-linkage. Organic Electronics, 2014, 15, 1138-1148.	2.6	26
16	High performance asymmetrical push–pull small molecules end-capped with cyanophenyl for solution-processed solar cells. Chemical Communications, 2014, 50, 10251-10254.	4.1	61
17	Linkage effects of linear D–π–A–π–D type diketopyrrolopyrrole-triphenylamine based solution-processable organic small molecule photovoltaic materials. Journal of Materials Chemistry C, 2014, 2, 4019.	5 . 5	34
18	The synthesis and photovoltaic properties of $A\hat{a}\in \hat{D}\hat{a}\in \hat{A}$ -type small molecules containing diketopyrrolopyrrole terminal units. New Journal of Chemistry, 2013, 37, 632-639.	2.8	51

#	Article	IF	CITATIONS
19	D–π–A–π–D type benzothiadiazole–triphenylamine based small molecules containing cyano on the π-bridge for solution-processed organic solar cells with high open-circuit voltage. Chemical Communications, 2012, 48, 10627.	4.1	83
20	D?A?D low band gap molecule containing triphenylamine and benzoxadiazole/benzothiadiazole units: Synthesis and photophysical properties. Dyes and Pigments, 2012, 95, 229-235.	3.7	55