Wenjing Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/156876/publications.pdf

Version: 2024-02-01

	623734	642732
537	14	23
citations	h-index	g-index
29	29	661
docs citations	times ranked	citing authors
	citations 29	537 14 citations h-index 29 29

#	Article	IF	CITATIONS
1	Enhanced d-tagatose production by spore surface-displayed l-arabinose isomerase from isolated Lactobacillus brevis PC16 and biotransformation. Bioresource Technology, 2018, 247, 940-946.	9.6	49
2	A macromolecular \hat{l} ±-glucan from fruiting bodies of Volvariella volvacea activating RAW264. 7 macrophages through MAPKs pathway. Carbohydrate Polymers, 2020, 230, 115674.	10.2	47
3	Hericium erinaceus polysaccharide-protein HEG-5 inhibits SGC-7901 cell growth via cell cycle arrest and apoptosis. International Journal of Biological Macromolecules, 2015, 76, 242-253.	7.5	44
4	Purification and partial characterization of a novel anti-tumor glycoprotein from cultured mycelia of Grifola frondosa. International Journal of Biological Macromolecules, 2013, 62, 684-690.	7.5	42
5	Random mutagenesis of Clostridium butyricum strain and optimization of biosynthesis process for enhanced production of 1,3-propanediol. Bioresource Technology, 2019, 284, 188-196.	9.6	42
6	Production and characterization of a novel acidophilic and thermostable xylanase from Thermoascus aurantiacu. International Journal of Biological Macromolecules, 2018, 109, 1270-1279.	7.5	34
7	Production of 1,3-propanediol using a novel 1,3-propanediol dehydrogenase from isolated Clostridium butyricum and co-biotransformation of whole cells. Bioresource Technology, 2018, 247, 838-843.	9.6	28
8	<i>Grifola frondosa</i> Glycoprotein GFG-3a Arrests S phase, Alters Proteome, and Induces Apoptosis in Human Gastric Cancer Cells. Nutrition and Cancer, 2016, 68, 267-279.	2.0	26
9	ARTP mutation and adaptive laboratory evolution improve probiotic performance of Bacillus coagulans. Applied Microbiology and Biotechnology, 2020, 104, 6363-6373.	3.6	24
10	Enhanced Acid Tolerance in Lactobacillus acidophilus by Atmospheric and Room Temperature Plasma (ARTP) Coupled with Adaptive Laboratory Evolution (ALE). Applied Biochemistry and Biotechnology, 2020, 191, 1499-1514.	2.9	24
11	Non-sterile and buffer-free bioconversion of glucose to 2-keto-gluconic acid by using Pseudomonas fluorescens AR4 free resting cells. Process Biochemistry, 2015, 50, 493-499.	3.7	20
12	Improved xylitol production by expressing a novel d-arabitol dehydrogenase from isolated Gluconobacter sp. JX-05 and co-biotransformation of whole cells. Bioresource Technology, 2017, 235, 50-58.	9.6	20
13	Genetically Engineered Strains: Application and Advances for 1,3-Propanediol Production from Glycerol. Food Technology and Biotechnology, 2018, 55, 3-15.	2.1	20
14	Ultrasound-assisted extraction and antioxidant activity of polysaccharides from Acanthus ilicifolius. Journal of Food Measurement and Characterization, 2020, 14, 1223-1235.	3.2	17
15	Uptake, translocation, and subcellular distribution of three triazole pesticides in rice. Environmental Science and Pollution Research, 2022, 29, 25581-25590.	5.3	13
16	Purification, characterization and gene identification of a membrane-bound glucose dehydrogenase from 2-keto-d-gluconic acid industrial producing strain Pseudomonas plecoglossicida JUIM01. International Journal of Biological Macromolecules, 2018, 118, 534-541.	7. 5	12
17	Biocatalytic Synthesis of D-Allulose Using Novel D-Tagatose 3-Epimerase From Christensenella minuta. Frontiers in Chemistry, 2020, 8, 622325.	3.6	12
18	Two-Stage Semi-Continuous 2-Keto-Gluconic Acid (2KGA) Production by Pseudomonas plecoglossicida JUIM01 From Rice Starch Hydrolyzate. Frontiers in Bioengineering and Biotechnology, 2020, 8, 120.	4.1	11

#	Article	IF	CITATIONS
19	A Membrane-Bound Gluconate Dehydrogenase from 2-Keto-d-Gluconic Acid Industrial Producing Strain Pseudomonas plecoglossicida JUIM01: Purification, Characterization, and Gene Identification. Applied Biochemistry and Biotechnology, 2019, 188, 897-913.	2.9	10
20	Enhancing 2-Ketogluconate Production of Pseudomonas plecoglossicida JUIM01 by Maintaining the Carbon Catabolite Repression of 2-Ketogluconate Metabolism. Molecules, 2018, 23, 2629.	3.8	9
21	2-Keto-D-Gluconate-Yielding Membrane-Bound D-Glucose Dehydrogenase from Arthrobacter globiformis C224: Purification and Characterization. Molecules, 2015, 20, 846-862.	3.8	8
22	A Novel 2-Keto-d-Gluconic Acid High-Producing Strain Arthrobacter globiformis JUIM02. Applied Biochemistry and Biotechnology, 2018, 185, 947-957.	2.9	5
23	The Role of kguT Gene in 2-Ketogluconate-Producing Pseudomonas plecoglossicida JUIM01. Applied Biochemistry and Biotechnology, 2019, 187, 965-974.	2.9	5
24	Production of 2-keto-gluconic acid from glucose by immobilized Pseudomonas plecoglossicida resting cells. 3 Biotech, 2020, 10, 253.	2.2	5
25	Effects of tebuconazole application at different growth stages on rice grain quality of rice-based untargeted metabolomics. Chemosphere, 2022, 303, 134920.	8.2	5
26	Improvement of D-Ribose Production from Corn Starch Hydrolysate by a Transketolase-Deficient Strain <i>Bacillus subtilis</i> VIJS0717. BioMed Research International, 2015, 2015, 1-14.	1.9	3
27	Enhancement of quality retention of Grifola frondosa fruiting bodies by erythorbic acid treatment. 3 Biotech, 2018, 8, 305.	2.2	1
28	A 2-ketogluconate kinase KguK in Pseudomonas plecoglossicida JUIM01: Enzymatic characterization and its role in 2-keto-d-gluconic acid metabolism. International Journal of Biological Macromolecules, 2020, 165, 2640-2648.	7.5	1
29	Characterization of a transcriptional regulator PtxS from Pseudomonas plecoglossicida for regulating 2-ketogluconic acid metabolism. International Journal of Biological Macromolecules, 2021, 174, 330-338.	7. 5	0