
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/156813/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Irregular rupture propagation and geometric fault complexities during the 2010 Mw 7.2 El Mayor-Cucapah earthquake. Scientific Reports, 2022, 12, 4575.	3.3	5
2	Potency density tensor inversion of complex body waveforms with time-adaptive smoothing constraint. Geophysical Journal International, 2022, 231, 91-107.	2.4	6
3	Complex rupture process on the conjugate fault system of the 2014 Mw 6.2 Thailand earthquake. Progress in Earth and Planetary Science, 2022, 9, .	3.0	3
4	Rupture Process of the 2020 Caribbean Earthquake Along the Oriente Transform Fault, Involving Supershear Rupture and Geometric Complexity of Fault. Geophysical Research Letters, 2021, 48, .	4.0	19
5	A Bayesian inference framework for fault slip distributions based on ensemble modelling of the uncertainty of underground structure: with a focus on uncertain fault dip. Geophysical Journal International, 2021, 225, 1392-1411.	2.4	7
6	Consecutive ruptures on a complex conjugate fault system during the 2018 Gulf of Alaska earthquake. Scientific Reports, 2021, 11, 5979.	3.3	10
7	Nucleation process of the 2011 northern Nagano earthquake from nearby seismic observations. Scientific Reports, 2021, 11, 8143.	3.3	3
8	Back-propagating rupture evolution within a curved slab during the 2019 <i>M</i> w 8.0 Peru intraslab earthquake. Geophysical Journal International, 2021, 227, 1602-1611.	2.4	11
9	llluminating a Contorted Slab With a Complex Intraslab Rupture Evolution During the 2021 Mw 7.3 East Cape, New Zealand Earthquake. Geophysical Research Letters, 2021, 48, .	4.0	11
10	Development of an inversion method to extract information on fault geometry from teleseismic data. Geophysical Journal International, 2020, 220, 1055-1065.	2.4	29
11	Construction of fault geometry by finite-fault inversion of teleseismic data. Geophysical Journal International, 2020, 224, 1003-1014.	2.4	17
12	Inchworm-like source evolution through a geometrically complex fault fueled persistent supershear rupture during the 2018 Palu Indonesia earthquake. Earth and Planetary Science Letters, 2020, 547, 116449.	4.4	18
13	Back-propagating supershear rupture in the 2016 Mw 7.1 Romanche transform fault earthquake. Nature Geoscience, 2020, 13, 647-653.	12.9	46
14	The 2018 Sulawesi tsunami in Palu city as a result of several landslides and coseismic tsunamis. Coastal Engineering Journal, 2020, 62, 445-459.	1.9	26
15	Backprojection to image slip. Geophysical Journal International, 2019, 216, 1529-1537.	2.4	11
16	Role of geometric barriers in irregular-rupture evolution during the 2008 Wenchuan earthquake. Geophysical Journal International, 2018, 212, 1657-1664.	2.4	27
17	Triggering and decay characteristics of dynamically activated seismicity in Southwest Japan. Geophysical Journal International, 2018, 212, 1010-1021.	2.4	3
18	Characteristics of foreshock activity inferred from the JMA earthquake catalog. Earth, Planets and Space, 2018, 70, .	2.5	18

#	Article	IF	CITATIONS
19	Development and application of a tsunami fragility curve of the 2015Âtsunami in Coquimbo, Chile. Natural Hazards and Earth System Sciences, 2018, 18, 2143-2160.	3.6	25
20	Earthquake source characterization, moment tensor solutions, and stress field of small-moderate earthquakes occurred in the northern Red Sea Triple Junction. Geosciences Journal, 2017, 21, 235-251.	1.2	15
21	Fast crustal deformation computing method for multiple computations accelerated by a graphics processing unit cluster. Geophysical Journal International, 2017, 210, 787-800.	2.4	8
22	Dependence of seismic and radiated energy on shorter wavelength components. Geophysical Journal International, 2017, 209, 1585-1592.	2.4	6
23	The 16 September 2015 Chile Tsunami from the Post-Tsunami Survey and Numerical Modeling Perspectives. , 2017, , 219-234.		2
24	Rupture Process During the 2015 Illapel, Chile Earthquake: Zigzag-Along-Dip Rupture Episodes. , 2017, , 23-32.		4
25	Rupture process of the 2016 Kumamoto earthquake in relation to the thermal structure around Aso volcano. Earth, Planets and Space, 2016, 68, .	2.5	83
26	Volcanic magma reservoir imaged as a low-density body beneath Aso volcano that terminated the 2016 Kumamoto earthquake rupture. Earth, Planets and Space, 2016, 68, .	2.5	17
27	The Earthquakeâ€Source Inversion Validation (SIV) Project. Seismological Research Letters, 2016, 87, 690-708.	1.9	96
28	Implementation of integrated multi-channel analysis of surface waves and waveform inversion techniques for seismic hazard estimation. Arabian Journal of Geosciences, 2016, 9, 1.	1.3	6
29	Improving back projection imaging with a novel physicsâ€based aftershock calibration approach: A case study of the 2015 Gorkha earthquake. Geophysical Research Letters, 2016, 43, 628-636.	4.0	61
30	etas_solve: A Robust Program to Estimate the ETAS Model Parameters. Seismological Research Letters, 2016, 87, 1143-1149.	1.9	2
31	Remote triggering of seismicity at Japanese volcanoes following the 2016 M7.3 Kumamoto earthquake. Earth, Planets and Space, 2016, 68, .	2.5	10
32	Rupture Process During the 2015 Illapel, Chile Earthquake: Zigzag-Along-Dip Rupture Episodes. Pure and Applied Geophysics, 2016, 173, 1011-1020.	1.9	37
33	The 16 September 2015 Chile Tsunami from the Post-Tsunami Survey and Numerical Modeling Perspectives. Pure and Applied Geophysics, 2016, 173, 333-348.	1.9	84
34	Unusual low-angle normal fault earthquakes after the 2011 Tohoku-oki megathrust earthquake. Earth, Planets and Space, 2015, 67, .	2.5	1
35	Integrated seismic source model of the 2015 Gorkha, Nepal, earthquake. Geophysical Research Letters, 2015, 42, 6229-6235.	4.0	100
36	Fluidâ€driven seismicity activation in northern Nagano region after the 2011 <i>M</i> 9.0 Tohokuâ€oki earthquake. Geophysical Research Letters, 2014, 41, 7524-7531.	4.0	21

#	Article	IF	CITATIONS
37	Filtering Effect in Waveform Data Inversion for Seismic Source Process. Zisin (Journal of the) Tj ETQq1 1 0.784314	rgBT /Ov	erlock 10 Tf
38	A method for the joint inversion of geodetic and seismic waveform data using ABIC: application to the 1997 Manyi, Tibet, earthquake. Geophysical Journal International, 2014, 196, 1564-1579.	2.4	40
39	Theoretical relationship between back-projection imaging and classical linear inverse solutions. Geophysical Journal International, 2014, 196, 552-559.	2.4	27
40	Rupture process of the 2014 Iquique Chile Earthquake in relation with the foreshock activity. Geophysical Research Letters, 2014, 41, 4201-4206.	4.0	87
41	Relationship between High-frequency Radiation and Asperity Ruptures, Revealed by Hybrid Back-projection with a Non-planar Fault Model. Scientific Reports, 2014, 4, 7120.	3.3	37
42	An interpretation of tsunami earthquake based on a simple dynamic model: Failure of shallow megathrust earthquake. Geophysical Research Letters, 2013, 40, 1523-1527.	4.0	6
43	Source process of the 12 May 2008 Wenchuan, China, earthquake determined by waveform inversion of teleseismic body waves with a data covariance matrix. Earth, Planets and Space, 2012, 64, e13-e16.	2.5	38
44	Constraints on the early-stage rupture process of the 2011 Tohoku-oki earthquake from 1-Hz GPS data. Earth, Planets and Space, 2012, 64, 1093-1099.	2.5	4
45	Smooth and rapid slip near the Japan Trench during the 2011 Tohoku-oki earthquake revealed by a hybrid back-projection method. Earth and Planetary Science Letters, 2012, 355-356, 94-101.	4.4	74
46	Absolute strain release in the 2011 Tohoku-oki Earthquake:. Journal of the Geological Society of Japan, 2012, 118, 396-409.	0.6	3
47	Seismic Source Process of the 2011 Tohoku-oki Earthquake. Zisin (Journal of the Seismological Society) Tj ETQq1	1,0,78431 0.2	.4 ₄ rgBT /Ove
48	Depth dependence of rupture velocity in deep earthquakes. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	20
49	Rupture process of the 2011 Tohoku-oki earthquake and absolute elastic strain release. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	186
50	A unified source model for the 2011 Tohoku earthquake. Earth and Planetary Science Letters, 2011, 310, 480-487.	4.4	232
51	Introduction of uncertainty of Green's function into waveform inversion for seismic source processes. Geophysical Journal International, 2011, 186, 711-720.	2.4	146
52	Rebuilding seismology. Nature, 2011, 473, 146-148.	27.8	32
53	Rupture process and coseismic deformations of the 27 February 2010 Maule earthquake, Chile. Earth, Planets and Space, 2011, 63, 955-959.	2.5	15

54 Developments of Seismic Source Process Analysis Method. Zisin (Journal of the Seismological Society) Tj ETQq0 0 0,rgBT /Overlock 10 Tr

#	Article	IF	CITATIONS
55	Importance of covariance components in inversion analyses of densely sampled observed data: an application to waveform data inversion for seismic source processes. Geophysical Journal International, 2008, 175, 215-221.	2.4	51
56	Rupture process of four mediumâ€sized earthquakes that occurred in the Gulf of California. Journal of Geophysical Research, 2008, 113, .	3.3	11
57	Coseismic Slip Distribution of the 2005 Miyagi-Oki (M 7.2) Earthquake Estimated by Inversion of Strong-motion and Teleseismic Waveforms. Zisin (Journal of the Seismological Society of Japan 2nd) Tj ETQq1	1 0. 784 314	∔rg B T /Over∣o
58	Static stress change from the 8 October, 2005 M = 7.6 Kashmir earthquake. Geophysical Research Letters, 2006, 33, .	4.0	69
59	Coseismic slip distribution of the 2005 off Miyagi earthquake (M7.2) estimated by inversion of teleseismic and regional seismograms. Earth, Planets and Space, 2006, 58, 1549-1554.	2.5	24
60	Plate boundary slip associated with the 2003 Off-Tokachi earthquake based on small repeating earthquake data. Geophysical Research Letters, 2005, 32, .	4.0	28
61	A comparison between Dc′-values obtained from a dynamic rupture model and waveform inversion. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	9
62	Source rupture process of the 2003 Tokachi-oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data. Earth, Planets and Space, 2004, 56, 311-316.	2.5	146
63	The dynamic rupture process of the 2001 Geiyo, Japan, earthquake. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	14
64	Source Rupture Process of the Tecoman, Colima, Mexico Earthquake of 22 January 2003, Determined by Joint Inversion of Teleseismic Body-Wave and Near-Source Data. Bulletin of the Seismological Society of America, 2004, 94, 1795-1807.	2.3	120
65	Slip-weakening distance in dynamic rupture of in-slab normal-faulting earthquakes. Geophysical Journal International, 2003, 155, 443-455.	2.4	18
66	Partitioning between seismogenic and aseismic slip as highlighted from slow slip events in Hyuga-nada, Japan. Geophysical Research Letters, 2003, 30, .	4.0	40
67	Waveform inversion for seismic source processes using ABIC with two sorts of prior constraints: Comparison between proper and improper formulations. Geophysical Research Letters, 2003, 30, .	4.0	38
68	Co-seismic slip, post-seismic slip, and largest aftershock associated with the 1994 Sanriku-haruka-oki, Japan, earthquake. Geophysical Research Letters, 2003, 30, .	4.0	66
69	Stress-Breakdown Time and Slip-Weakening Distance Inferred from Slip-Velocity Functions on Earthquake Faults. Bulletin of the Seismological Society of America, 2003, 93, 264-282.	2.3	139
70	Materials Science and Seismological Approaches to Understanding Seismogenic Processes Partitioning between Co-seismic Slip and A-seismic Slip. Journal of Geography (Chigaku Zasshi), 2003, 112, 828-836.	0.3	5
71	Coseismic and postseismic stress changes in a subducting plate: Possible stress interactions between large interplate thrust and intraplate normal-faulting earthquakes. Journal of Geophysical Research, 2002, 107, ESE 5-1-ESE 5-12.	3.3	33
72	Co-seismic slip, post-seismic slip, and aftershocks associated with two large earthquakes in 1996 in Hyuga-nada, Japan. Earth, Planets and Space, 2001, 53, 793-803.	2.5	62

#	Article	IF	CITATIONS
73	Source rupture process of the Kocaeli, Turkey, earthquake of August 17, 1999, obtained by joint inversion of near-field data and teleseismic data. Geophysical Research Letters, 2000, 27, 1969-1972.	4.0	102
74	Comparison of the coseismic rupture with the aftershock distribution in the Hyuga-nada Earthquakes of 1996. Geophysical Research Letters, 1999, 26, 3161-3164.	4.0	47
75	Source Process of the Hyuga-nada Earthquake of April 1, 1968 (<i>M</i> _{JMA} 7.5), and its Relationship to the Subsequent Seismicity. Zisin (Journal of the Seismological Society of Japan 2nd Ser), 1998, 51, 139-148.	0.2	23