Y Alan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1567706/publications.pdf

Version: 2024-02-01

32	4,191	22	30
papers	citations	h-index	g-index
33	33	33	8753 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Prediction of biomarkers and therapeutic combinations for anti-PD-1 immunotherapy using the global gene network association. Nature Communications, 2022, 13, 42.	5.8	27
2	Synthetic Essentiality of Tryptophan 2,3-Dioxygenase 2 in <i>APC</i> -Mutated Colorectal Cancer. Cancer Discovery, 2022, 12, 1702-1717.	7.7	15
3	Abraxane-induced bone marrow CD11b ⁺ myeloid cell depletion in tumor-bearing mice is visualized by νPET-CT with ⁶⁴ Cu-labeled anti-CD11b and prevented by anti-CSF-1. Theranostics, 2021, 11, 3527-3539.	4.6	4
4	Identification of Blood-Based Biomarkers for the Prediction of the Response to Neoadjuvant Chemoradiation in Rectal Cancer. Cancers, 2021, 13, 3642.	1.7	6
5	AR-negative prostate cancer is vulnerable to loss of JMJD1C demethylase. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3. 3	6
6	USP21 deubiquitinase elevates macropinocytosis to enable oncogenic KRAS bypass in pancreatic cancer. Genes and Development, 2021, 35, 1327-1332.	2.7	18
7	Telomerase reverse transcriptase preserves neuron survival and cognition in Alzheimer's disease models. Nature Aging, 2021, 1, 1162-1174.	5 . 3	24
8	Circadian Regulator CLOCK Recruits Immune-Suppressive Microglia into the GBM Tumor Microenvironment. Cancer Discovery, 2020, 10, 371-381.	7.7	102
9	Telomere dysfunction activates YAP1 to drive tissue inflammation. Nature Communications, 2020, 11 , 4766.	5. 8	42
10	Effective combinatorial immunotherapy for penile squamous cell carcinoma. Nature Communications, 2020, 11, 2124.	5.8	45
11	Chromatin Regulator CHD1 Remodels the Immunosuppressive Tumor Microenvironment in PTEN-Deficient Prostate Cancer. Cancer Discovery, 2020, 10, 1374-1387.	7.7	60
12	Oncogenic KRAS-Driven Metabolic Reprogramming in Pancreatic Cancer Cells Utilizes Cytokines from the Tumor Microenvironment. Cancer Discovery, 2020, 10, 608-625.	7.7	119
13	Tumor Microenvironment Remodeling Enables Bypass of Oncogenic KRAS Dependency in Pancreatic Cancer. Cancer Discovery, 2020, 10, 1058-1077.	7.7	87
14	USP21 deubiquitinase promotes pancreas cancer cell stemness via Wnt pathway activation. Genes and Development, 2019, 33, 1361-1366.	2.7	65
15	Symbiotic Macrophage-Glioma Cell Interactions Reveal Synthetic Lethality in PTEN-Null Glioma. Cancer Cell, 2019, 35, 868-884.e6.	7.7	202
16	KRAS-IRF2 Axis Drives Immune Suppression and Immune Therapy Resistance in Colorectal Cancer. Cancer Cell, 2019, 35, 559-572.e7.	7.7	353
17	Syndecan 1 is a critical mediator of macropinocytosis in pancreatic cancer. Nature, 2019, 568, 410-414.	13.7	129
18	TMIC-14. AUTO-/PARACRINE SIGNALING OF PI3K/AKT/YKL-40 IN MESENCHYMAL GLIOBLASTOMA PROGRESSION. Neuro-Oncology, 2018, 20, vi258-vi259.	0.6	0

#	Article	IF	Citations
19	TMIC-01. LOX DEPENDENT MACROPHAGE RECRUITMENT IN GBM. Neuro-Oncology, 2018, 20, vi256-vi256.	0.6	0
20	An <i>In Vivo</i> Screen Identifies PYGO2 as a Driver for Metastatic Prostate Cancer. Cancer Research, 2018, 78, 3823-3833.	0.4	16
21	Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer. Nature, 2017, 542, 119-123.	13.7	209
22	Synthetic essentiality of chromatin remodelling factor CHD1 in PTEN-deficient cancer. Nature, 2017, 542, 484-488.	13.7	173
23	Oncogenic <i>Kras</i> drives invasion and maintains metastases in colorectal cancer. Genes and Development, 2017, 31, 370-382.	2.7	137
24	Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature, 2017, 543, 728-732.	13.7	403
25	Loss of FOXO1 Cooperates with TMPRSS2–ERG Overexpression to Promote Prostate Tumorigenesis and Cell Invasion. Cancer Research, 2017, 77, 6524-6537.	0.4	51
26	PAF promotes stemness and radioresistance of glioma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9086-E9095.	3.3	40
27	Opposing roles of $TGF\hat{l}^2$ and BMP signaling in prostate cancer development. Genes and Development, 2017, 31, 2337-2342.	2.7	30
28	SF2312 is a natural phosphonate inhibitor of enolase. Nature Chemical Biology, 2016, 12, 1053-1058.	3.9	90
29	Epigenetic Activation of WNT5A Drives Glioblastoma Stem Cell Differentiation and Invasive Growth. Cell, 2016, 167, 1281-1295.e18.	13.5	207
30	Targeting YAP-Dependent MDSC Infiltration Impairs Tumor Progression. Cancer Discovery, 2016, 6, 80-95.	7.7	404
31	Development of Resistance to EGFR-Targeted Therapy in Malignant Glioma Can Occur through EGFR-Dependent and -Independent Mechanisms. Cancer Research, 2015, 75, 2109-2119.	0.4	33
32	Telomere dysfunction induces metabolic and mitochondrial compromise. Nature, 2011, 470, 359-365.	13.7	1,093