Takayuki Asahara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1567689/publications.pdf

Version: 2024-02-01

38 papers 20,122 citations

279701 23 h-index 39 g-index

40 all docs

40 docs citations

40 times ranked

13928 citing authors

#	Article	IF	CITATIONS
1	Isolation of Putative Progenitor Endothelial Cells for Angiogenesis. Science, 1997, 275, 964-966.	6.0	8,153
2	Bone Marrow Origin of Endothelial Progenitor Cells Responsible for Postnatal Vasculogenesis in Physiological and Pathological Neovascularization. Circulation Research, 1999, 85, 221-228.	2.0	3,097
3	Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature Medicine, 1999, 5, 434-438.	15.2	2,266
4	Therapeutic Potential of Ex Vivo Expanded Endothelial Progenitor Cells for Myocardial Ischemia. Circulation, 2001, 103, 634-637.	1.6	1,154
5	Stromal Cell–Derived Factor-1 Effects on Ex Vivo Expanded Endothelial Progenitor Cell Recruitment for Ischemic Neovascularization. Circulation, 2003, 107, 1322-1328.	1.6	1,072
6	Age-Dependent Impairment of Angiogenesis. Circulation, 1999, 99, 111-120.	1.6	707
7	Tie2 Receptor Ligands, Angiopoietin-1 and Angiopoietin-2, Modulate VEGF-Induced Postnatal Neovascularization. Circulation Research, 1998, 83, 233-240.	2.0	637
8	The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nature Medicine, 2001, 7, 706-711.	15.2	583
9	Synergistic Effect of Vascular Endothelial Growth Factor and Basic Fibroblast Growth Factor on Angiogenesis In Vivo. Circulation, 1995, 92, 365-371.	1.6	504
10	Concise Review: Circulating Endothelial Progenitor Cells for Vascular Medicine. Stem Cells, 2011, 29, 1650-1655.	1.4	375
11	Role of Endothelial Nitric Oxide Synthase in Endothelial Cell Migration. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 1156-1161.	1.1	272
12	Intramuscular Transplantation of G-CSF-Mobilized CD34+ Cells in Patients With Critical Limb Ischemia: A Phase I/IIa, Multicenter, Single-Blinded, Dose-Escalation Clinical Trial. Stem Cells, 2009, 27, 2857-2864.	1.4	223
13	Estradiol Accelerates Functional Endothelial Recovery After Arterial Injury. Circulation, 1997, 95, 1768-1772.	1.6	182
14	Methodological Development of a Clonogenic Assay to Determine Endothelial Progenitor Cell Potential. Circulation Research, 2011, 109, 20-37.	2.0	138
15	Endothelial Progenitor Cells for Vascular Regeneration. Journal of Hematotherapy and Stem Cell Research, 2002, 11, 171-178.	1.8	125
16	Overexpression of p27Kip1by doxycyclineâ€regulated adenoviral vectors inhibits endothelial cell proliferation and migration and impairs angiogenesis. FASEB Journal, 2001, 15, 1877-1885.	0.2	86
17	Bone Marrow as a Source of Endothelial Cells for Natural and latrogenic Vascular Repair. Annals of the New York Academy of Sciences, 2001, 953a, 75-84.	1.8	77
18	Development of Serum-Free Quality and Quantity Control Culture of Colony-Forming Endothelial Progenitor Cell for Vasculogenesis. Stem Cells Translational Medicine, 2012, 1, 160-171.	1.6	64

#	Article	IF	CITATIONS
19	Vasculogenic Conditioning of Peripheral Blood Mononuclear Cells Promotes Endothelial Progenitor Cell Expansion and Phenotype Transition of Antiâ€Inflammatory Macrophage and T Lymphocyte to Cells With Regenerative Potential. Journal of the American Heart Association, 2014, 3, e000743.	1.6	56
20	Lnk Deletion Reinforces the Function of Bone Marrow Progenitors in Promoting Neovascularization and Astrogliosis Following Spinal Cord Injury. Stem Cells, 2010, 28, 365-375.	1.4	40
21	The Role of Notch Signaling in Endothelial Progenitor Cell Biology. Trends in Cardiovascular Medicine, 2009, 19, 170-173.	2.3	33
22	Lnk-dependent axis of SCF–cKit signal for osteogenesis in bone fracture healing. Journal of Experimental Medicine, 2010, 207, 2207-2223.	4.2	25
23	Cross Talk with Hematopoietic Cells Regulates the Endothelial Progenitor Cell Differentiation of CD34 Positive Cells. PLoS ONE, 2014, 9, e106310.	1.1	24
24	Contribution of bone marrowâ€derived endothelial progenitor cells to neovascularization and astrogliosis following spinal cord injury. Journal of Neuroscience Research, 2012, 90, 2281-2292.	1.3	23
25	Hematopoietic stem-cell senescence and myocardial repair - Coronary artery disease genotype/phenotype analysis of post-MI myocardial regeneration response induced by CABG/CD133+ bone marrow hematopoietic stem cell treatment in RCT PERFECT Phase 3. EBioMedicine, 2020, 57, 102862.	2.7	22
26	Regeneration-associated cells improve recovery from myocardial infarction through enhanced vasculogenesis, anti-inflammation, and cardiomyogenesis. PLoS ONE, 2018, 13, e0203244.	1.1	21
27	Clonogenic assay of endothelial progenitor cells. Trends in Cardiovascular Medicine, 2013, 23, 99-103.	2.3	20
28	Sonic Hedgehog signaling regulates vascular differentiation and function in human CD34 positive cells. Stem Cell Research, 2015, 14, 165-176.	0.3	19
29	Characterization of Endothelial Progenitor Cell: Past, Present, and Future. International Journal of Molecular Sciences, 2022, 23, 7697.	1.8	19
30	Jagged-1 Signaling in the Bone Marrow Microenvironment Promotes Endothelial Progenitor Cell Expansion and Commitment of CD133+ Human Cord Blood Cells for Postnatal Vasculogenesis. PLoS ONE, 2016, 11, e0166660.	1.1	16
31	Sonic Hedgehog Signaling Pathway in Endothelial Progenitor Cell Biology for Vascular Medicine. International Journal of Molecular Sciences, 2018, 19, 3040.	1.8	16
32	Latest Advances in Endothelial Progenitor Cell-Derived Extracellular Vesicles Translation to the Clinic. Frontiers in Cardiovascular Medicine, 2021, 8, 734562.	1.1	16
33	Dextran induces differentiation of circulating endothelial progenitor cells. Physiological Reports, 2014, 2, e00261.	0.7	11
34	Extracellular Vesicles Derived From Regeneration Associated Cells Preserve Heart Function After Ischemia-Induced Injury. Frontiers in Cardiovascular Medicine, 2021, 8, 754254.	1.1	10
35	The Hedgehog Signaling Pathway in Ischemic Tissues. International Journal of Molecular Sciences, 2019, 20, 5270.	1.8	9
36	Dipeptidyl dipeptidase-4 inhibitor recovered ischemia through an increase in vasculogenic endothelial progenitor cells and regeneration-associated cells in diet-induced obese mice. PLoS ONE, 2019, 14, e0205477.	1.1	7

3

#	Article	IF	CITATIONS
37	Changing modified regions in the genome in hematopoietic stem cell differentiation. Biochemical and Biophysical Research Communications, 2009, 381, 135-138.	1.0	3
38	Personalized Cell Therapy for Patients with Peripheral Arterial Diseases in the Context of Genetic Alterations: Artificial Intelligence-Based Responder and Non-Responder Prediction. Cells, 2021, 10, 3266.	1.8	2