Joel D Trinity

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1567451/publications.pdf

Version: 2024-02-01

201674 254184 2,101 91 27 43 citations h-index g-index papers 91 91 91 2449 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	On the contribution of group III and IV muscle afferents to the circulatory response to rhythmic exercise in humans. Journal of Physiology, 2011, 589, 3855-3866.	2.9	134
2	Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H346-H352.	3.2	97
3	Nitric oxide and passive limb movement: a new approach to assess vascular function. Journal of Physiology, 2012, 590, 1413-1425.	2.9	86
4	Progressive handgrip exercise: evidence of nitric oxide-dependent vasodilation and blood flow regulation in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1101-H1107.	3.2	85
5	Changes in Muscle Activity and Kinematics of Highly Trained Cyclists During Fatigue. IEEE Transactions on Biomedical Engineering, 2008, 55, 2666-2674.	4.2	84
6	Further Peripheral Vascular Dysfunction inÂHeart Failure Patients With a Continuous-Flow Left Ventricular Assist Device. JACC: Heart Failure, 2015, 3, 703-711.	4.1	83
7	Symmorphosis and skeletal muscle : <i>in vivo</i> and <i>in vitro</i> measures reveal differing constraints in the exerciseâ€trained and untrained human. Journal of Physiology, 2016, 594, 1741-1751.	2.9	79
8	Assessment of resistance vessel function in human skeletal muscle: guidelines for experimental design, Doppler ultrasound, and pharmacology. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H301-H325.	3.2	78
9	Strong Relationship Between Vascular Function in the Coronary and Brachial Arteries. Hypertension, 2019, 74, 208-215.	2.7	63
10	Passive leg movement and nitric oxide-mediated vascular function: the impact of age. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H672-H679.	3.2	61
11	Regulation of exercise blood flow: Role of free radicals. Free Radical Biology and Medicine, 2016, 98, 90-102.	2.9	57
12	Does Brachial Artery Flow–Mediated Vasodilation Provide a Bioassay for NO?. Hypertension, 2013, 62, 345-351.	2.7	56
13	Attenuated exercise induced hyperaemia with age: mechanistic insight from passive limb movement. Journal of Physiology, 2010, 588, 4507-4517.	2.9	54
14	The impact of ageing on adipose structure, function and vasculature in the B6D2F1 mouse: evidence of significant multisystem dysfunction. Journal of Physiology, 2014, 592, 4083-4096.	2.9	54
15	Interaction of hyperthermia and heart rate on stroke volume during prolonged exercise. Journal of Applied Physiology, 2010, 109, 745-751.	2.5	51
16	Limb movement-induced hyperemia has a central hemodynamic component: evidence from a neural blockade study. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1693-H1700.	3.2	48
17	The role of nitric oxide in passive leg movementâ€induced vasodilatation with age: insight from alterations in femoral perfusion pressure. Journal of Physiology, 2015, 593, 3917-3928.	2.9	43
18	Endothelin-AÂ-Mediated Vasoconstriction During Exercise With Advancing Age. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 554-565.	3.6	40

#	Article	IF	CITATIONS
19	Elevated arterial shear rate increases indexes of endothelial cell autophagy and nitric oxide synthase activation in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H106-H112.	3.2	36
20	<i>InÂvivo</i> evidence of an age-related increase in ATP cost of contraction in the plantar flexor muscles. Clinical Science, 2014, 126, 581-592.	4.3	34
21	Acute High-Intensity Exercise Impairs Skeletal Muscle Respiratory Capacity. Medicine and Science in Sports and Exercise, 2018, 50, 2409-2417.	0.4	34
22	Impact of body position on central and peripheral hemodynamic contributions to movement-induced hyperemia: implications for rehabilitative medicine. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1885-H1891.	3.2	33
23	Heart failure and movement-induced hemodynamics: Partitioning the impact of central and peripheral dysfunction. International Journal of Cardiology, 2015, 178, 232-238.	1.7	33
24	Quadriceps exercise intolerance in patients with chronic obstructive pulmonary disease: the potential role of altered skeletal muscle mitochondrial respiration. Journal of Applied Physiology, 2015, 119, 882-888.	2.5	33
25	Single passive leg movement assessment of vascular function: contribution of nitric oxide. Journal of Applied Physiology, 2017, 123, 1468-1476.	2.5	33
26	Taming the "sleeping giant†the role of endothelin-1 in the regulation of skeletal muscle blood flow and arterial blood pressure during exercise. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H162-H169.	3.2	32
27	Attenuated relationship between cardiac output and oxygen uptake during highâ€intensity exercise. Acta Physiologica, 2012, 204, 362-370.	3.8	29
28	Increased skeletal muscle mitochondrial free radical production in peripheral arterial disease despite preserved mitochondrial respiratory capacity. Experimental Physiology, 2018, 103, 838-850.	2.0	29
29	Perfusion pressure and movement-induced hyperemia: evidence of limited vascular function and vasodilatory reserve with age. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H610-H619.	3.2	28
30	Physiological Impact and Clinical Relevance of Passive Exercise/Movement. Sports Medicine, 2019, 49, 1365-1381.	6.5	27
31	Maximal Mechanical Power during a Taper in Elite Swimmers. Medicine and Science in Sports and Exercise, 2006, 38, 1643-1649.	0.4	26
32	Ascorbic acid improves brachial artery vasodilation during progressive handgrip exercise in the elderly through a nitric oxide-mediated mechanism. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H765-H774.	3.2	24
33	Altered skeletal muscle mitochondrial phenotype in COPD: disease vs. disuse. Journal of Applied Physiology, 2018, 124, 1045-1053.	2.5	24
34	Accuracy and precision of quantitative < sup > 31 < /sup > P-MRS measurements of human skeletal muscle mitochondrial function. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E358-E366.	3.5	23
35	Impact of Polyphenol Antioxidants on Cycling Performance and Cardiovascular Function. Nutrients, 2014, 6, 1273-1292.	4.1	22
36	Contribution of nitric oxide to brachial artery vasodilation during progressive handgrip exercise in the elderly. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R893-R899.	1.8	21

#	Article	IF	CITATIONS
37	Mitochondrial function and increased convective O ₂ transport: implications for the assessment of mitochondrial respiration in vivo. Journal of Applied Physiology, 2013, 115, 803-811.	2.5	21
38	Impact of Age and Body Position on the Contribution of Nitric Oxide to Femoral Artery Shear Rate. Hypertension, 2014, 63, 1019-1025.	2.7	20
39	Oral antioxidants improve leg blood flow during exercise in patients with chronic obstructive pulmonary disease. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H977-H985.	3.2	20
40	Maximal strength training increases muscle force generating capacity and the anaerobic ATP synthesis flux without altering the cost of contraction in elderly. Experimental Gerontology, 2018, 111, 154-161.	2.8	20
41	Influence of dietary inorganic nitrate on blood pressure and vascular function in hypertension: prospective implications for adjunctive treatment. Journal of Applied Physiology, 2019, 127, 1085-1094.	2.5	20
42	Serum Sodium Concentration Changes Are Related to Fluid Balance and Sweat Sodium Loss. Medicine and Science in Sports and Exercise, 2010, 42, 1669-1674.	0.4	18
43	Cardiovascular responses to rhythmic handgrip exercise in heart failure with preserved ejection fraction. Journal of Applied Physiology, 2020, 129, 1267-1276.	2.5	17
44	Impact of presymptomatic COVID-19 on vascular and skeletal muscle function: a case study. Journal of Applied Physiology, 2021, 130, 1961-1970.	2.5	17
45	Impaired Muscle Efficiency but Preserved Peripheral Hemodynamics and Mitochondrial Function With Advancing Age: Evidence From Exercise in the Young, Old, and Oldest-Old. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 1303-1312.	3.6	16
46	Passive leg movement-induced vasodilation in women: the impact of age. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H995-H1002.	3.2	15
47	Mitochondrial function in heart failure: The impact of ischemic and non-ischemic etiology. International Journal of Cardiology, 2016, 220, 711-717.	1.7	15
48	Impact of age on exercise-induced ATP supply during supramaximal plantar flexion in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R378-R388.	1.8	13
49	Skeletal Muscle Mitochondrial Adaptations to Maximal Strength Training in Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 2269-2277.	3.6	10
50	Cardiovasomobility: an integrative understanding of how disuse impacts cardiovascular and skeletal muscle health. Journal of Applied Physiology, 2022, 132, 835-861.	2.5	10
51	Activating P2Y1 receptors improves function in arteries with repressed autophagy. Cardiovascular Research, 2023, 119, 252-267.	3.8	10
52	Oxygen delivery and the restoration of the muscle energetic balance following exercise: implications for delayed muscle recovery in patients with COPD. American Journal of Physiology - Endocrinology and Metabolism, 2017, 313, E94-E104.	3.5	9
53	The role of the endothelium in the hyperemic response to passive leg movement: looking beyond nitric oxide. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H668-H678.	3.2	9
54	Evidence of a metabolic reserve in the skeletal muscle of elderly people. Aging, 2016, 9, 52-67.	3.1	9

#	Article	IF	Citations
55	Delineating the age-related attenuation of vascular function: Evidence supporting the efficacy of the single passive leg movement as a screening tool. Journal of Applied Physiology, 2019, 126, 1525-1532.	2.5	8
56	Something is definitely better than nothing: simple strategies to prevent vascular dysfunction. Clinical Science, 2017, 131, 1055-1058.	4.3	7
57	Endogenous endothelin-1 and femoral artery shear rate. Journal of Hypertension, 2016, 34, 266-273.	0.5	6
58	Passive leg movement in chronic obstructive pulmonary disease: evidence of locomotor muscle vascular dysfunction. Journal of Applied Physiology, 2020, 128, 1402-1411.	2.5	5
59	Spinal cord injury and vascular function: evidence from diameter-matched vessels. Journal of Applied Physiology, 2021, 130, 562-570.	2.5	5
60	Effect of histamine-receptor antagonism on leg blood flow during exercise. Journal of Applied Physiology, 2020, 128, 1626-1634.	2.5	4
61	The dynamic adjustment of mean arterial pressure during exercise: a potential tool for discerning cardiovascular health status. Journal of Applied Physiology, 2021, 130, 1544-1554.	2.5	4
62	Comments on Point:Counterpoint: Skeletal muscle mechanical efficiency does/does not increase with age. Journal of Applied Physiology, 2013, 114, 1114-1118.	2.5	3
63	The role of endothelin A receptors in peripheral vascular control at rest and during exercise in patients with hypertension. Journal of Physiology, 2020, 598, 71-84.	2.9	3
64	Nitric oxide synthase inhibition with $N(G)$ -monomethyl-l-arginine: Determining the window of effect in the human vasculature. Nitric Oxide - Biology and Chemistry, 2020, 104-105, 51-60.	2.7	3
65	Acute high-intensity exercise and skeletal muscle mitochondrial respiratory function: role of metabolic perturbation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 321, R687-R698.	1.8	3
66	Short-term exposure to a clinical dose of metformin increases skeletal muscle mitochondrial H2O2 emission and production in healthy, older adults: A randomized controlled trial. Experimental Gerontology, 2022, 163, 111804.	2.8	3
67	Dietary Nitrate Supplementation and Small Muscle Mass Exercise Hemodynamics in Patients with Essential Hypertension. Journal of Applied Physiology, 0, , .	2.5	2
68	Heterogeneity of blood flow: impact of age on muscle specific tissue perfusion during exercise. Journal of Physiology, 2014, 592, 1729-1730.	2.9	1
69	Persistent vascular dysfunction following an acute nonpharmacological reduction in blood pressure in hypertensive patients. Journal of Hypertension, 2022, 40, 1115-1125.	0.5	1
70	Commentary on: an (un)paralleled process?. Experimental Physiology, 2013, 98, 1325-1325.	2.0	0
71	Gender Differences In Sweat Sodium Loss In Well-trained Endurance Athletes. Medicine and Science in Sports and Exercise, 2007, 39, S277.	0.4	0
72	The Effects of Continuousâ€flow Left Ventricular Assist Devices on Peripheral Vascular Function. FASEB Journal, 2013, 27, 1136.16.	0.5	0

#	Article	IF	CITATIONS
73	Exerciseâ€induced PCr recovery kinetics and tissue oxygenation: The role of free radicals and aging. FASEB Journal, 2013, 27, 1202.17.	0.5	O
74	Is Sympathetic Restraint of Skeletal Muscle Blood Flow Present During Exercise?. FASEB Journal, 2013, 27, 1136.2.	0.5	0
75	Flow Mediated Vasodilation And Limb Disuse Following A Spinal Cord Injury. Medicine and Science in Sports and Exercise, 2014, 46, 667.	0.4	0
76	Mitochondrial Function and Insulin Sensitivity Following 6 Weeks of Single-Leg Cycling in Metabolic Syndrome Patients. Medicine and Science in Sports and Exercise, 2015, 47, 238.	0.4	0
77	Peripheral Vascular Dysfunction Following Left Ventricular Assist Device Implantation. Medicine and Science in Sports and Exercise, 2016, 48, 189.	0.4	0
78	Passive Leg Movement (PLM) in Patients with COPD. Medicine and Science in Sports and Exercise, 2016, 48, 801.	0.4	0
79	The Age-related Decline In Vo2max. Medicine and Science in Sports and Exercise, 2017, 49, 904-905.	0.4	0
80	Role of Alphaâ€1 Adrenergic Vasoconstriction in Regulating Skeletal Muscle Blood Flow during Single Leg Knee Extension Exercise with Advancing Age. FASEB Journal, 2018, 32, 594.5.	0.5	0
81	Sex Differences in the Sympathetic Restraint of Skeletal Muscle Blood Flow in the Human Leg Vasculature. FASEB Journal, 2018, 32, 594.4.	0.5	0
82	Cardiovascular Responses to Dynamic Handgrip Exercise in Patients with Heart Failure with Preserved Ejection Fraction. FASEB Journal, 2018, 32, 726.1.	0.5	0
83	Rhythmic handgrip exercise elevates arterial shearâ€rate and increases indices of endothelial cell autophagy and nitric oxide synthase activation in humans. FASEB Journal, 2018, 32, 902.1.	0.5	0
84	Blood Pressure and Vascular Function in Hypertensive Individuals: Partitioning cause and effect. FASEB Journal, 2018, 32, 847.11.	0.5	0
85	Mechanisms of Ageâ€related Compensatory Vasodilation: Insight from Passive Leg Movement. FASEB Journal, 2018, 32, 726.7.	0.5	0
86	Delineating the ageâ€related attenuation of vascular function: evidence supporting the efficacy of single passive leg movement FASEB Journal, 2018, 32, 578.6.	0.5	0
87	Influence of altered physical activity on vascular function in older adults: A divergent impact on the conduit and microvascular systems. FASEB Journal, 2018, 32, 713.1.	0.5	0
88	Impact of Acute Dietary Nitrate Supplementation on Exercise Blood Flow in Hypertension: Does Medication Status Matter?. FASEB Journal, 2019, 33, 696.17.	0.5	0
89	Evidence for an Ageâ€Associated Impairment of Exerciseâ€Induced Autophagy and eNOS Activation in Primary Arterial Endothelial Cells from Humans. FASEB Journal, 2019, 33, 696.2.	0.5	0
90	The Role of Endothelinâ€1 in Exercising Blood Flow and Blood Pressure Regulation in Patients with Hypertension. FASEB Journal, 2019, 33, 696.11.	0.5	0

#	Article	IF	CITATIONS
91	Impact of Salt Restriction on Central and Peripheral Hemodynamics During Exercise in Essential Hypertension: A Systematic Investigation. FASEB Journal, 2019, 33, 835.10.	0.5	0