
Haruhisa Inoue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1566823/publications.pdf Version: 2024-02-01

HADIIHISA INOLIE

#	Article	IF	CITATIONS
1	Dissection of the polygenic architecture of neuronal Aβ production using a large sample of individual iPSC lines derived from Alzheimer's disease patients. Nature Aging, 2022, 2, 125-139.	11.6	7
2	Metabolites of soil microorganisms modulate amyloid β production in Alzheimer's neurons. Scientific Reports, 2022, 12, 2690.	3.3	2
3	One-step induction of photoreceptor-like cells from human iPSCs by delivering transcription factors. IScience, 2022, 25, 103987.	4.1	3
4	TDP-43 regulates cholesterol biosynthesis by inhibiting sterol regulatory element-binding protein 2. Scientific Reports, 2022, 12, 7988.	3.3	11
5	Recommendations (Proposal) for promoting research for overcoming neurological diseases 2020. Clinical Neurology, 2022, , .	0.1	0
6	Recommendations (Proposal) for promoting research for overcoming neurological diseases 2020. Clinical Neurology, 2022, , .	0.1	0
7	Generation of Motor Neurons from Human ESCs/iPSCs Using Sendai Virus Vectors. Methods in Molecular Biology, 2021, 2352, 127-132.	0.9	1
8	microRNA-33 maintains adaptive thermogenesis via enhanced sympathetic nerve activity. Nature Communications, 2021, 12, 843.	12.8	14
9	Prediction Model of Amyotrophic Lateral Sclerosis by Deep Learning with Patient Induced Pluripotent Stem Cells. Annals of Neurology, 2021, 89, 1226-1233.	5.3	22
10	iPSC screening for drug repurposing identifies antiâ€RNA virus agents modulating host cell susceptibility. FEBS Open Bio, 2021, 11, 1452-1464.	2.3	17
11	Human induced pluripotent stem cells generated from a patient with idiopathic basal ganglia calcification. Stem Cell Research, 2021, 53, 102274.	0.7	1
12	Repurposing bromocriptine for AÎ ² metabolism in Alzheimer's disease (REBRAnD) study: randomised placebo-controlled double-blind comparative trial and open-label extension trial to investigate the safety and efficacy of bromocriptine in Alzheimer's disease with presenilin 1 (PSEN1) mutations. BMJ Open, 2021, 11, e051343.	1.9	9
13	Establishment of induced pluripotent stem cells from schizophrenia discordant fraternal twins. Stem Cell Research, 2021, 55, 102504.	0.7	0
14	Simple derivation of skeletal muscle from human pluripotent stem cells using temperatureâ€sensitive Sendai virus vector. Journal of Cellular and Molecular Medicine, 2021, 25, 9586-9596.	3.6	7
15	Reprogramming the brain in and out of diseased states. Molecular and Cellular Neurosciences, 2021, 110, 103571.	2.2	0
16	Dopaminergic neurons in chromosome 22q11.2 deletion syndrome. EBioMedicine, 2021, 63, 103180.	6.1	1
17	Induction of inverted morphology in brain organoids by vertical-mixing bioreactors. Communications Biology, 2021, 4, 1213.	4.4	13
18	Prediction of Compound Bioactivities Using Heat-Diffusion Equation. Patterns, 2020, 1, 100140.	5.9	3

#	Article	IF	CITATIONS
19	Generation of a human induced pluripotent stem cell line, BRCi009-A, derived from a patient with glycogen storage disease type 1a. Stem Cell Research, 2020, 49, 102095.	0.7	2
20	Generation of a human induced pluripotent stem cell line, BRCi005-A, derived from a Best disease patient with BEST1 mutations. Stem Cell Research, 2020, 45, 101782.	0.7	0
21	Generation of a human induced pluripotent stem cell line, BRCi004-A, derived from a patient with age-related macular degeneration. Stem Cell Research, 2020, 45, 101787.	0.7	0
22	From in vitro to in vivo reprogramming for neural transdifferentiation: An approach for CNS tissue remodeling using stem cell technology. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1739-1751.	4.3	6
23	Human iPS cell-derived mural cells as an in vitro model of hereditary cerebral small vessel disease. Molecular Brain, 2020, 13, 38.	2.6	12
24	Nasal vaccine delivery attenuates brain pathology and cognitive impairment in tauopathy model mice. Npj Vaccines, 2020, 5, 28.	6.0	15
25	ALS, a cellular whodunit on motor neuron degeneration. Molecular and Cellular Neurosciences, 2020, 107, 103524.	2.2	9
26	Evaluation of Toxic Amyloid β42 Oligomers in Rat Primary Cerebral Cortex Cells and Human iPS-derived Neurons Treated with 10-Me-Aplog-1, a New PKC Activator. International Journal of Molecular Sciences, 2020, 21, 1179.	4.1	6
27	Galectin 3–binding protein suppresses amyloid-β production by modulating β-cleavage of amyloid precursor protein. Journal of Biological Chemistry, 2020, 295, 3678-3691.	3.4	29
28	Induced pluripotent stem cell technology: venturing into the second decade. , 2020, , 435-443.		2
29	Generation of a human induced pluripotent stem cell line derived from a Parkinson's disease patient carrying SNCA duplication. Stem Cell Research, 2020, 45, 101828.	0.7	2
30	Modeling Neurological Disorders with Human Pluripotent Stem Cell-Derived Astrocytes. International Journal of Molecular Sciences, 2019, 20, 3862.	4.1	20
31	Brief review: Can modulating DNA methylation state help the clinical application of oligodendrocyte precursor cells as a source of stem cell therapy?. Brain Research, 2019, 1723, 146386.	2.2	4
32	High molecular weight amyloid β _{1â€42} oligomers induce neurotoxicity <i>via</i> plasma membrane damage. FASEB Journal, 2019, 33, 9220-9234.	0.5	72
33	Functional evaluation of PDCFB-variants in idiopathic basal ganglia calcification, using patient-derived iPS cells. Scientific Reports, 2019, 9, 5698.	3.3	8
34	Generation of a human induced pluripotent stem cell line, BRCi001-A, derived from a patient with mucopolysaccharidosis type I. Stem Cell Research, 2019, 36, 101406.	0.7	4
35	MiR-33a is a therapeutic target in SPG4-related hereditary spastic paraplegia human neurons. Clinical Science, 2019, 133, 583-595.	4.3	7
36	Induced pluripotent stem cell–based Drug Repurposing for Amyotrophic lateral sclerosis Medicine (iDReAM) study: protocol for a phase I dose escalation study of bosutinib for amyotrophic lateral sclerosis patients. BMJ Open, 2019, 9, e033131.	1.9	32

#	Article	IF	CITATIONS
37	Establishment of human induced pluripotent stem cell line from a patient with Angelman syndrome carrying the deletion of maternal chromosome 15q11.2-q13. Stem Cell Research, 2019, 34, 101363.	0.7	7
38	Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. Physiological Reviews, 2019, 99, 79-114.	28.8	230
39	Overexpressed wild-type superoxide dismutase 1 exhibits amyotrophic lateral sclerosis-related misfolded conformation in induced pluripotent stem cell-derived spinal motor neurons. NeuroReport, 2018, 29, 25-29.	1.2	4
40	A small-molecule inhibitor of SOD1-Derlin-1 interaction ameliorates pathology in an ALS mouse model. Nature Communications, 2018, 9, 2668.	12.8	19
41	Simple Derivation of Spinal Motor Neurons from ESCs/iPSCs Using Sendai Virus Vectors. Molecular Therapy - Methods and Clinical Development, 2017, 4, 115-125.	4.1	31
42	Idiopathic Parkinson's disease patientâ€derived induced pluripotent stem cells function as midbrain dopaminergic neurons in rodent brains. Journal of Neuroscience Research, 2017, 95, 1829-1837.	2.9	28
43	The Src/c-Abl pathway is a potential therapeutic target in amyotrophic lateral sclerosis. Science Translational Medicine, 2017, 9, .	12.4	182
44	Induced pluripotent stem cell technology: a decade of progress. Nature Reviews Drug Discovery, 2017, 16, 115-130.	46.4	1,076
45	A simplified and sensitive method to identify Alzheimer's disease biomarker candidates using patient-derived induced pluripotent stem cells (iPSCs). Journal of Biochemistry, 2017, 162, 391-394.	1.7	15
46	Human iPS cell-derived dopaminergic neurons function in a primate Parkinson's disease model. Nature, 2017, 548, 592-596.	27.8	528
47	TDP-43 stabilises the processing intermediates of mitochondrial transcripts. Scientific Reports, 2017, 7, 7709.	3.3	45
48	Prenatal neurogenesis induction therapy normalizes brain structure and function in Down syndrome mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10268-10273.	7.1	66
49	Analysis of neural crest cells from Charcot–Marie–Tooth disease patients demonstrates disease-relevant molecular signature. NeuroReport, 2017, 28, 814-821.	1.2	7
50	Antisense Oligonucleotides Reduce RNA Foci in Spinocerebellar Ataxia 36 Patient iPSCs. Molecular Therapy - Nucleic Acids, 2017, 8, 211-219.	5.1	27
51	Induced pluripotent stem cells derived from a patient with familial idiopathic basal ganglia calcification (IBGC) caused by a mutation in SLC20A2 gene. Stem Cell Research, 2017, 24, 40-43.	0.7	4
52	Establishment of DYT5 patient-specific induced pluripotent stem cells with a GCH1 mutation. Stem Cell Research, 2017, 24, 36-39.	0.7	1
53	Induced pluripotent stem cells derived from an autosomal dominant lateral temporal epilepsy (ADLTE) patient carrying S473L mutation in leucine-rich glioma inactivated 1 (LGI1). Stem Cell Research, 2017, 24, 12-15.	0.7	4
54	iPSC-Based Compound Screening and InÂVitro Trials Identify a Synergistic Anti-amyloid β Combination for Alzheimer's Disease. Cell Reports, 2017, 21, 2304-2312.	6.4	161

#	Article	IF	CITATIONS
55	Proteasome impairment in neural cells derived from HMSN-P patient iPSCs. Molecular Brain, 2017, 10, 7.	2.6	16
56	Modeling Alexander disease with patient iPSCs reveals cellular and molecular pathology of astrocytes. Acta Neuropathologica Communications, 2016, 4, 69.	5.2	44
57	Calcium dysregulation contributes to neurodegeneration in FTLD patient iPSC-derived neurons. Scientific Reports, 2016, 6, 34904.	3.3	67
58	Multimodal Imaging for DREADD-Expressing Neurons in Living Brain and Their Application to Implantation of iPSC-Derived Neural Progenitors. Journal of Neuroscience, 2016, 36, 11544-11558.	3.6	32
59	Genetic and pharmacological correction of aberrant dopamine synthesis using patient iPSCs with BH4 metabolism disorders. Human Molecular Genetics, 2016, 25, ddw339.	2.9	32
60	Vulnerability of Purkinje Cells Generated from Spinocerebellar Ataxia Type 6 Patient-Derived iPSCs. Cell Reports, 2016, 17, 1482-1490.	6.4	91
61	Cytoplasmic aggregates of dynactin in iPSC-derived tyrosine hydroxylase-positive neurons from a patient with Perry syndrome. Parkinsonism and Related Disorders, 2016, 30, 67-72.	2.2	15
62	Engineering the AAVS1 locus for consistent and scalable transgene expression in human iPSCs and their differentiated derivatives. Methods, 2016, 101, 43-55.	3.8	150
63	A Second Pedigree with Amyloid-less Familial Alzheimer's Disease Harboring an Identical Mutation in the Amyloid Precursor Protein Gene (E693delta). Internal Medicine, 2015, 54, 205-208.	0.7	12
64	Modeling the Early Phenotype at the Neuromuscular Junction of Spinal Muscular Atrophy Using Patient-Derived iPSCs. Stem Cell Reports, 2015, 4, 561-568.	4.8	92
65	CHCHD2 is down-regulated in neuronal cells differentiated from iPS cells derived from patients with lissencephaly. Genomics, 2015, 106, 196-203.	2.9	12
66	iPS cells: a game changer for future medicine. EMBO Journal, 2014, 33, 409-417.	7.8	374
67	Focal Transplantation of Human iPSC-Derived Glial-Rich Neural Progenitors Improves Lifespan of ALS Mice. Stem Cell Reports, 2014, 3, 242-249.	4.8	131
68	A Chemical Probe that Labels Human Pluripotent Stem Cells. Cell Reports, 2014, 6, 1165-1174.	6.4	42
69	Bereitschaftspotential augmentation by neuro-feedback training in Parkinson's disease. Clinical Neurophysiology, 2013, 124, 1398-1405.	1.5	19
70	Modeling Alzheimer's Disease with iPSCs Reveals Stress Phenotypes Associated with Intracellular Aβ and Differential Drug Responsiveness. Cell Stem Cell, 2013, 12, 487-496.	11.1	652
71	Response to Comment on "Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells― Science Translational Medicine, 2013, 5, 188lr2.	12.4	5
72	Modicine 2013 102 112b 112b	0.0	0

#	Article	IF	CITATIONS
73	Motor Neuron-specific Disruption of Proteasomes, but Not Autophagy, Replicates Amyotrophic Lateral Sclerosis. Journal of Biological Chemistry, 2012, 287, 42984-42994.	3.4	162
74	Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12538-12543.	7.1	277
75	Research on neurodegenerative diseases using induced pluripotent stem cells. Psychogeriatrics, 2012, 12, 115-119.	1.2	8
76	α-Synuclein BAC transgenic mice as a model for Parkinson's disease manifested decreased anxiety-like behavior and hyperlocomotion. Neuroscience Research, 2012, 73, 173-177.	1.9	60
77	Amyotrophic Lateral Sclerosis Model Derived from Human Embryonic Stem Cells Overexpressing Mutant Superoxide Dismutase 1. Stem Cells Translational Medicine, 2012, 1, 396-402.	3.3	24
78	Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells. Science Translational Medicine, 2012, 4, 145ra104.	12.4	465
79	Anti-AÎ ² Drug Screening Platform Using Human iPS Cell-Derived Neurons for the Treatment of Alzheimer's Disease. PLoS ONE, 2011, 6, e25788.	2.5	156
80	P301S Mutant Human Tau Transgenic Mice Manifest Early Symptoms of Human Tauopathies with Dementia and Altered Sensorimotor Gating. PLoS ONE, 2011, 6, e21050.	2.5	160
81	Thromboxane receptor activation enhances striatal dopamine release, leading to suppression of GABAergic transmission and enhanced sugar intake. European Journal of Neuroscience, 2011, 34, 594-604.	2.6	13
82	Chemical Library Screening Identifies a Small Molecule That Downregulates SOD1 Transcription for Drugs to Treat Amyotrophic Lateral Sclerosis. Journal of Biomolecular Screening, 2011, 16, 405-414.	2.6	8
83	The Endoplasmic Reticulum Stress Sensor, ATF6α, Protects against Neurotoxin-induced Dopaminergic Neuronal Death. Journal of Biological Chemistry, 2011, 286, 7947-7957.	3.4	119
84	N-cadherin Regulates p38 MAPK Signaling via Association with JNK-associated Leucine Zipper Protein. Journal of Biological Chemistry, 2011, 286, 7619-7628.	3.4	62
85	Neurodegenerative disease-specific induced pluripotent stem cell research. Experimental Cell Research, 2010, 316, 2560-2564.	2.6	25
86	Proteasome inhibition in medaka brain induces the features of Parkinson's disease. Journal of Neurochemistry, 2010, 115, 178-187.	3.9	46
87	Loss of PINK1 in medaka fish (Oryzias latipes) causes late-onset decrease in spontaneous movement. Neuroscience Research, 2010, 66, 151-161.	1.9	27
88	Nicotinic receptor stimulation protects nigral dopaminergic neurons in rotenoneâ€induced Parkinson's disease models. Journal of Neuroscience Research, 2009, 87, 576-585.	2.9	105
89	Autoimmune autonomic ganglionopathy with Sjögren's syndrome: Significance of ganglionic acetylcholine receptor antibody and therapeutic approach. Autonomic Neuroscience: Basic and Clinical, 2009, 146, 33-35.	2.8	33
90	A chemical neurotoxin, MPTP induces Parkinson's disease like phenotype, movement disorders and persistent loss of dopamine neurons in medaka fish. Neuroscience Research, 2009, 65, 263-271.	1.9	43

#	Article	IF	CITATIONS
91	Leukoencephalopathy with Cognitive Impairment following Tocilizumab for the Treatment of Rheumatoid Arthritis (RA). Internal Medicine, 2009, 48, 1307-1309.	0.7	28
92	Protein Misfolding and Axonal Protection in Neurodegenerative Diseases. Focus on Structural Biology, 2009, , 97-110.	0.1	2
93	Paelâ€R transgenic mice crossed with parkin deficient mice displayed progressive and selective catecholaminergic neuronal loss. Journal of Neurochemistry, 2008, 107, 171-185.	3.9	56
94	Accumulation of HtrA2/Omi in Neuronal and Glial Inclusions in Brains With α-Synucleinopathies. Journal of Neuropathology and Experimental Neurology, 2008, 67, 984-993.	1.7	44
95	Inhibition of the leucine-rich repeat protein LINGO-1 enhances survival, structure, and function of dopaminergic neurons in Parkinson's disease models. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14430-14435.	7.1	154
96	Pael receptor is involved in dopamine metabolism in the nigrostriatal system. Neuroscience Research, 2007, 59, 413-425.	1.9	39
97	Rac-GAP α-Chimerin Regulates Motor-Circuit Formation as a Key Mediator of EphrinB3/EphA4 Forward Signaling. Cell, 2007, 130, 742-753.	28.9	161
98	Pael-R is accumulated in Lewy bodies of Parkinson's disease. Annals of Neurology, 2004, 55, 439-442.	5.3	140
99	The crucial role of caspase-9 in the disease progression of a transgenic ALS mouse model. EMBO Journal, 2003, 22, 6665-6674.	7.8	96
100	VAChT-Cre.Fast and VAChT-Cre.Slow: Postnatal expression of Cre recombinase in somatomotor neurons with different onset. Genesis, 2003, 37, 44-50.	1.6	31
101	Magnetic Resonance Imaging of Primary Spinal Intramedullary Lymphoma. Journal of Neuroimaging, 2002, 12, 183-186.	2.0	22
102	An Unfolded Putative Transmembrane Polypeptide, which Can Lead to Endoplasmic Reticulum Stress, Is a Substrate of Parkin. Cell, 2001, 105, 891-902.	28.9	1,008
103	Transgenic mice with Alzheimer presenilin 1 mutations show accelerated neurodegeneration without amyloid plaque formation. Nature Medicine, 1999, 5, 560-564.	30.7	355
104	Serial analysis of gene expression in a microglial cell line. , 1999, 28, 265-271.		46
105	CDiP technology for reverse engineering of sporadic Alzheimer's disease. Journal of Human Genetics, 0, , .	2.3	1