Laurival Antonio De Luca Junior

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1566745/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Whole body sodium depletion modifies AT 1 mRNA expression and serotonin content in the dorsal raphe nucleus. Journal of Neuroendocrinology, 2019, 31, e12703.	1.2	11
2	Central muscarinic and LPBN mechanisms on sodium intake. Brain Research Bulletin, 2019, 144, 14-20.	1.4	1
3	Estradiol modulates the palatability of 0.3â€ [−] M NaCl in female rats during sodium appetite. Appetite, 2019, 133, 252-261.	1.8	7
4	Opioid and α2 adrenergic mechanisms are activated by GABA agonists in the lateral parabrachial nucleus to induce sodium intake. Brain Research Bulletin, 2018, 139, 174-181.	1.4	2
5	Enhanced angiotensin II induced sodium appetite in renovascular hypertensive rats. Peptides, 2018, 101, 82-88.	1.2	12
6	The lateral parabrachial nucleus and central angiotensinergic mechanisms in the control of sodium intake induced by different stimuli. Behavioural Brain Research, 2017, 333, 17-26.	1.2	11
7	Lateral parabrachial nucleus and opioid mechanisms of the central nucleus of the amygdala in the control of sodium intake. Behavioural Brain Research, 2017, 316, 11-17.	1.2	14
8	Water deprivation-partial rehydration induces sensitization of sodium appetite and alteration of hypothalamic transcripts. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R15-R23.	0.9	7
9	Participation of α ₂ â€adrenoceptors in sodium appetite inhibition during sickness behaviour following administration of lipopolysaccharide. Journal of Physiology, 2016, 594, 1607-1616.	1.3	6
10	Sodium intake combining cholinergic activation and noradrenaline into the lateral parabrachial nucleus. Neuroscience, 2015, 300, 229-237.	1.1	3
11	Sodium intake, brain c-Fos protein and gastric emptying in cell-dehydrated rats treated with methysergide into the lateral parabrachial nucleus. Physiology and Behavior, 2015, 151, 111-120.	1.0	4
12	Activation of μ opioid receptors in the LPBN facilitates sodium intake in rats. Behavioural Brain Research, 2015, 288, 20-25.	1.2	12
13	Importance of the central nucleus of the amygdala on sodium intake caused by deactivation of lateral parabrachial nucleus. Brain Research, 2015, 1625, 238-245.	1.1	8
14	Mapping brain Fos immunoreactivity in response to water deprivation and partial rehydration: Influence of sodium intake. Physiology and Behavior, 2015, 151, 494-501.	1.0	10
15	Gabaergic and opioid receptors mediate the facilitation of NaCl intake induced by α2-adrenergic activation in the lateral parabrachial nucleus. Behavioural Brain Research, 2015, 278, 535-541.	1.2	7
16	Role of α2-adrenoceptors in the lateral parabrachial nucleus in the control of body fluid homeostasis. Brazilian Journal of Medical and Biological Research, 2014, 47, 11-18.	0.7	7
17	Role of the lateral parabrachial nucleus in the control of sodium appetite. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 306, R201-R210.	0.9	53
18	Angiotensinergic and cholinergic receptors of the subfornical organ mediate sodium intake induced by GABAergic activation of the lateral parabrachial nucleus. Neuroscience, 2014, 262, 1-8.	1.1	13

#	Article	IF	CITATIONS
19	Involvement of central cholinergic mechanisms on sodium intake induced by gabaergic activation of the lateral parabrachial nucleus. Neuroscience Letters, 2013, 534, 188-192.	1.0	9
20	Facilitation of sodium intake by combining noradrenaline into the lateral parabrachial nucleus with prazosin peripherally. Pharmacology Biochemistry and Behavior, 2013, 111, 111-119.	1.3	1
21	Cardiovascular responses to injections of angiotensin II or carbachol into the rostral ventrolateral medulla in rats with AV3V lesions. Neuroscience Letters, 2013, 556, 32-36.	1.0	2
22	Moxonidine into the lateral parabrachial nucleus reduces renal and hormonal responses to cell dehydration. Neuroscience, 2012, 208, 69-78.	1.1	9
23	Commissural NTS lesions enhance the pressor response to central cholinergic and adrenergic activation. Neuroscience Letters, 2012, 521, 31-36.	1.0	3
24	Lipopolysaccharide reduces sodium intake and sodium excretion in dehydrated rats. Physiology and Behavior, 2011, 102, 164-169.	1.0	7
25	Central mechanisms involved in pilocarpine-induced pressor response. Autonomic Neuroscience: Basic and Clinical, 2011, 164, 34-42.	1.4	4
26	Baclofen into the lateral parabrachial nucleus induces hypertonic sodium chloride and sucrose intake in rats. Neuroscience, 2011, 183, 160-170.	1.1	22
27	Importance of central AT1 receptors for sodium intake induced by GABAergic activation of the lateral parabrachial nucleus. Neuroscience, 2011, 196, 147-152.	1.1	13
28	Mineral intake independent from gastric irritation or pica by cell-dehydrated rats. Physiology and Behavior, 2011, 104, 659-665.	1.0	7
29	Changes in taste reactivity to intra-oral hypertonic NaCl after lateral parabrachial injections of an α2-adrenergic receptor agonist. Physiology and Behavior, 2011, 104, 702-708.	1.0	22
30	Inhibition of sodium appetite by lipopolysaccharide: involvement of α2-adrenoceptors. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R185-R192.	0.9	9
31	Importance of angiotensinergic mechanisms for the pressor response to l-glutamate into the rostral ventrolateral medulla. Brain Research, 2010, 1322, 72-80.	1.1	14
32	Lesions in the central amygdala impair sodium intake induced by the blockade of the lateral parabrachial nucleus. Brain Research, 2010, 1332, 57-64.	1.1	24
33	Water deprivation-induced sodium appetite and differential expression of encephalic c-Fos immunoreactivity in the spontaneously hypertensive rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R1298-R1309.	0.9	20
34	FURO/CAP: A protocol for sodium intake sensitization. Physiology and Behavior, 2010, 99, 472-481.	1.0	28
35	Water deprivation-induced sodium appetite. Physiology and Behavior, 2010, 100, 535-544.	1.0	39
36	Lateral parabrachial nucleus and central amygdala in the control of sodium intake. Neuroscience, 2010, 165, 633-641.	1.1	35

#	Article	IF	CITATIONS
37	Inhibition of central angiotensin II-induced pressor responses by hydrogen peroxide. Neuroscience, 2010, 171, 524-530.	1.1	13
38	Damage to the central amygdala produces differential encephalic c-fos expression in the water deprivation–partial rehydration protocol. Brain Research, 2009, 1304, 80-89.	1.1	2
39	Involvement of central α1-adrenoceptors on renal responses to central moxonidine and α-methylnoradrenaline. European Journal of Pharmacology, 2009, 607, 60-67.	1.7	5
40	Activation of α2-adrenoceptors in the lateral hypothalamus reduces pilocarpine-induced salivation in rats. Neuroscience Letters, 2009, 450, 225-228.	1.0	12
41	Adrenergic mechanisms of the Kölliker-Fuse/A7 area on the control of water and sodium intake. Neuroscience, 2009, 164, 370-379.	1.1	26
42	Central muscarinic receptor subtypes involved in pilocarpineâ€induced salivation, hypertension and water intake. British Journal of Pharmacology, 2008, 155, 1256-1263.	2.7	21
43	Serotonergic receptor blockade in the lateral parabrachial nucleus: Different effects on hypertonic and isotonic NaCl intake. Brain Research, 2008, 1187, 137-145.	1.1	12
44	Sodium intake by hyperosmotic rats treated with a GABAA receptor agonist into the lateral parabrachial nucleus. Brain Research, 2008, 1190, 86-93.	1.1	9
45	Central angiotensin II induces sodium bicarbonate intake in the rat. Appetite, 2008, 51, 82-89.	1.8	5
46	Opioid activation in the lateral parabrachial nucleus induces hypertonic sodium intake. Neuroscience, 2008, 155, 350-358.	1.1	33
47	5-HT2 and 5-HT3 receptors in the lateral parabrachial nucleus mediate opposite effects on sodium intake. Neuroscience, 2007, 146, 1453-1461.	1.1	14
48	GABAergic mechanisms of the lateral parabrachial nucleus on sodium appetite. Brain Research Bulletin, 2007, 73, 238-247.	1.4	25
49	Central cholinergic blockade reduces the pressor response to l-glutamate into the rostral ventrolateral medullary pressor area. Brain Research, 2007, 1155, 100-107.	1.1	11
50	Alpha2-adrenergic activation in the lateral parabrachial nucleus induces NaCl intake under conditions of systemic hyperosmolarity. Neuroscience, 2006, 142, 21-28.	1.1	27
51	Damage of the medial preoptic area impairs peripheral pilocarpine-induced salivary secretion. Brain Research, 2006, 1085, 144-148.	1.1	10
52	AV3V lesions reduce the pressor response to l-glutamate into the RVLM. Brain Research, 2006, 1086, 160-167.	1.1	10
53	Activation of serotonergic 5-HT1A receptors in the lateral parabrachial nucleus increases NaCl intake. Brain Research, 2005, 1066, 1-9.	1.1	22
54	Effects of AV3V lesion on pilocarpine-induced pressor response and salivary gland vasodilation. Brain Research, 2005, 1055, 111-121.	1.1	17

#	Article	IF	CITATIONS
55	Potassium intake during cell dehydration. Physiology and Behavior, 2005, 85, 99-106.	1.0	9
56	GABAA receptor activation in the lateral parabrachial nucleus induces water and hypertonic NaCl intake. Neuroscience, 2005, 134, 725-735.	1.1	53
57	Cardiovascular responses to microinjection of l-glutamate into the NTS in AV3V-lesioned rats. Brain Research, 2004, 1025, 106-112.	1.1	11
58	Serotonergic mechanism of the lateral parabrachial nucleus and relaxin-induced sodium intake. Brain Research, 2004, 1030, 74-80.	1.1	11
59	Activation of α2-adrenergic receptors into the lateral parabrachial nucleus enhances NaCl intake in rats. Neuroscience, 2004, 129, 25-34.	1.1	47
60	Involvement of Forebrain Imidazoline and a2-Adrenergic Receptors in the Antidipsogenic Response to Moxonidine. Annals of the New York Academy of Sciences, 2003, 1009, 262-264.	1.8	7
61	Effect of the gadolinium ion on body fluid regulation. Pharmacology Biochemistry and Behavior, 2003, 76, 275-283.	1.3	1
62	Moxonidine and central α2 adrenergic receptors in sodium intake. Brain Research, 2003, 993, 177-182.	1.1	10
63	Central moxonidine on salivary gland blood flow and cardiovascular responses to pilocarpine. Brain Research, 2003, 987, 155-163.	1.1	16
64	Brain serotonin blockade and paradoxical salt intake in rats. Neuroscience, 2003, 121, 1055-1061.	1.1	35
65	Central α2 adrenergic receptors and cholinergic-induced salivation in rats. Brain Research Bulletin, 2003, 59, 383-386.	1.4	14
66	Ingestion of hypertonic NaCl vs. palatable drinks by sodium-depleted rats. Physiology and Behavior, 2002, 75, 443-448.	1.0	11
67	Isotonic NaCl intake by cell-dehydrated rats. Physiology and Behavior, 2002, 76, 501-505.	1.0	21
68	Lesions of the lateral hypothalamus impair pilocarpine-induced salivation in rats. Brain Research Bulletin, 2002, 58, 455-459.	1.4	25
69	Inhibition of pilocarpine-induced salivation in rats by central noradrenaline. Archives of Oral Biology, 2002, 47, 429-434.	0.8	19
70	Interaction between brain L-type calcium channels and α2-adrenoceptors in the inhibition of sodium appetite. Brain Research, 2002, 931, 1-4.	1.1	6
71	Moxonidine reduces pilocarpine-induced salivation in rats. Autonomic Neuroscience: Basic and Clinical, 2001, 91, 32-36.	1.4	10
72	Brain Versus Peripheral Angiotensin Ii Receptors In Hypovolaemia: Behavioural And Cardiovascular Implications. Clinical and Experimental Pharmacology and Physiology, 2000, 27, 437-442.	0.9	15

#	Article	IF	CITATIONS
73	Serotonergic mechanisms of the lateral parabrachial nucleus on DOCA-induced sodium intake. Brain Research, 2000, 880, 131-138.	1.1	40
74	Noradrenaline and mixed α2-adrenoceptor/imidazoline-receptor ligands: effects on sodium intake. Brain Research, 1999, 839, 227-234.	1.1	23
75	Sedation and Need-Free Salt Intake in Rats Treated With Clonidine. Pharmacology Biochemistry and Behavior, 1999, 62, 585-589.	1.3	7
76	Central moxonidine on water and NaCl intake. Brain Research Bulletin, 1999, 49, 273-279.	1.4	16
77	Sympathetic mediation of salivation induced by intracerebroventricular pilocarpine in rats. Journal of the Autonomic Nervous System, 1999, 76, 9-14.	1.9	14
78	Alterations in the water intake caused by central inhibition of angiotensin-converting enzyme in the rat. Neuroscience Letters, 1992, 134, 212-214.	1.0	7
79	Effect of furosemide treatment on the central and peripheral pressor responses to cholinergic and adrenergic agonists, angiotensin II, hypertonic solution and vasopressin. Neuroscience Letters, 1992, 143, 255-258.	1.0	5
80	Pressor, dipsogenic, natriuretic and kaliuretic responses to central carbachol in rats with lesion of the medial septal area. Neuroscience Letters, 1991, 132, 195-198.	1.0	9
81	Lesion of the anteroventral third ventricle region abolishes the beneficial effects of hypertonic saline on hemorrhagic shock in rats. Brain Research, 1990, 530, 342-344.	1.1	11
82	Carbachol injection into the medial preoptic area induces natriuresis, kaliuresis and antidiuresis in rats. Neuroscience Letters, 1989, 105, 333-339.	1.0	10