
Ian Rf Grainge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1565954/publications.pdf Version: 2024-02-01

IAN RECRAINCE

#	Article	IF	CITATIONS
1	FtsK and SpollIE, coordinators of chromosome segregation and envelope remodeling in bacteria. Trends in Microbiology, 2022, 30, 480-494.	7.7	16
2	Differential toxicity of potentially toxic elements to human gut microbes. Chemosphere, 2022, 303, 134958.	8.2	4
3	Gut microbes modulate bioaccessibility of lead in soil. Chemosphere, 2021, 270, 128657.	8.2	7
4	Exploring the Composition and Functions of Plastic Microbiome Using Whole-Genome Sequencing. Environmental Science & Technology, 2021, 55, 4899-4913.	10.0	71
5	Fingerprinting Plastic-Associated Inorganic and Organic Matter on Plastic Aged in the Marine Environment for a Decade. Environmental Science & amp; Technology, 2021, 55, 7407-7417.	10.0	25
6	Biofilms Enhance the Adsorption of Toxic Contaminants on Plastic Microfibers under Environmentally Relevant Conditions. Environmental Science & Technology, 2021, 55, 8877-8887.	10.0	108
7	Understanding the Fundamental Basis for Biofilm Formation on Plastic Surfaces: Role of Conditioning Films. Frontiers in Microbiology, 2021, 12, 687118.	3.5	62
8	Bioavailability of arsenic, cadmium, lead and mercury as measured by intestinal permeability. Scientific Reports, 2021, 11, 14675.	3.3	17
9	Complete Genome Sequences of Bacteriophages Kaya, Guyu, Kopi, and TehO, Which Target Clinical Strains of Pseudomonas aeruginosa. Microbiology Resource Announcements, 2021, 10, e0104321.	0.6	5
10	Mobilization of p <i>dif</i> modules in <i>Acinetobacter</i> : A novel mechanism for antibiotic resistance gene shuffling?. Molecular Microbiology, 2020, 114, 699-709.	2.5	22
11	Neutral–Neutral 2-Dimensional Agarose Gel Electrophoresis for Visualization of E. coli DNA Replication Structures. Methods in Molecular Biology, 2020, 2119, 61-72.	0.9	1
12	Replication fork collapse at a proteinâ€DNA roadblock leads to fork reversal, promoted by the RecQ helicase. Molecular Microbiology, 2019, 111, 455-472.	2.5	12
13	A Mini-ISY100 Transposon Delivery System Effective in Î ³ Proteobacteria. Frontiers in Microbiology, 2019, 10, 280.	3.5	5
14	Activation of Xer-recombination at dif: structural basis of the FtsKγ–XerD interaction. Scientific Reports, 2016, 6, 33357.	3.3	17
15	Inducing a Site Specific Replication Blockage in <i>E. coli</i> Using a Fluorescent Repressor Operator System. Journal of Visualized Experiments, 2016, , .	0.3	0
16	Stability of blocked replication forks <i>in vivo</i> . Nucleic Acids Research, 2016, 44, 657-668.	14.5	32
17	Biological Nanomotors with a Revolution, Linear, or Rotation Motion Mechanism. Microbiology and Molecular Biology Reviews, 2016, 80, 161-186.	6.6	47
18	Two classes of nucleic acid translocation motors: rotation and revolution without rotation. Cell and Bioscience, 2014, 4, 54.	4.8	15

IAN RF GRAINGE

#	Article	IF	CITATIONS
19	Simple topology: FtsK-directed recombination at the <i>dif</i> site. Biochemical Society Transactions, 2013, 41, 595-600.	3.4	13
20	FtsK-dependent XerCD- <i>dif</i> recombination unlinks replication catenanes in a stepwise manner. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20906-20911.	7.1	58
21	Imaging fluorescent protein fusions in live bacteria. Methods in Microbiology, 2012, 39, 107-126.	0.8	0
22	Activation of XerCD-dif recombination by the FtsK DNA translocase. Nucleic Acids Research, 2011, 39, 5140-5148.	14.5	61
23	FtsK DNA Translocase: The Fast Motor That Knows Where It's Going. ChemBioChem, 2010, 11, 2232-2243.	2.6	48
24	FtsK – a bacterial cell division checkpoint?. Molecular Microbiology, 2010, 78, 1055-1057.	2.5	26
25	Separating speed and ability to displace roadblocks during DNA translocation by FtsK. EMBO Journal, 2010, 29, 1423-1433.	7.8	34
26	The <i>Escherichia coli</i> DNA translocase FtsK. Biochemical Society Transactions, 2010, 38, 395-398.	3.4	65
27	Sporulation: SpoIIIE Is the Key to Cell Differentiation. Current Biology, 2008, 18, R871-R872.	3.9	5
28	Molecular Mechanism of Sequence-Directed DNA Loading and Translocation by FtsK. Molecular Cell, 2008, 31, 498-509.	9.7	97
29	Biochemical Characterization of the Minichromosome Maintenance (MCM) Protein of the Crenarchaeote <i>Aeropyrum pernix</i> and Its Interactions with the Origin Recognition Complex (ORC) Proteins. Biochemistry, 2008, 47, 13362-13370.	2.5	17
30	DNA translocation by hexameric FtsK. Acta Crystallographica Section A: Foundations and Advances, 2008, 64, C134-C134.	0.3	0
31	Unlinking chromosome catenanes in vivo by site-specific recombination. EMBO Journal, 2007, 26, 4228-4238.	7.8	93
32	Biochemical Analysis of a DNA Replication Origin in the Archaeon Aeropyrum pernix. Journal of Molecular Biology, 2006, 363, 355-369.	4.2	48
33	Tracking of controlled Escherichia coli replication fork stalling and restart at repressor-bound DNA in vivo. EMBO Journal, 2006, 25, 2596-2604.	7.8	107
34	Site-specific recombination. , 2006, , 443-467.		8
35	Applications of Fungal Site-specific Recombination as a Tool in Biotechnology and Basic Biology. Applied Mycology and Biotechnology, 2005, , 189-210.	0.3	0
36	Introduction to site-specific recombination. , 2005, , 33-82.		4

Introduction to site-specific recombination., 2005, , 33-82. 36

IAN RF GRAINGE

#	Article	IF	CITATIONS
37	Conformational Changes Induced by Nucleotide Binding in Cdc6/ORC From Aeropyrum pernix. Journal of Molecular Biology, 2004, 343, 547-557.	4.2	73
38	Biochemical analysis of components of the pre-replication complex of Archaeoglobus fulgidus. Nucleic Acids Research, 2003, 31, 4888-4898.	14.5	59
39	Symmetric DNA Sites are Functionally Asymmetric Within Flp and Cre Site-specific DNA Recombination Synapses. Journal of Molecular Biology, 2002, 320, 515-527.	4.2	31
40	Biochemical and kinetic analysis of the RNase active sites of the integrase/tyrosine family site-specific recombinases Journal of Biological Chemistry, 2002, 277, 6758.	3.4	1
41	DNA recombination and RNA cleavage activities of the Flp protein: roles of two histidine residues in the orientation and activation of the nucleophile for strand cleavage 1 1Edited by M. Gottesman. Journal of Molecular Biology, 2001, 314, 717-733.	4.2	5
42	Biochemical and Kinetic Analysis of the RNase Active Sites of the Integrase/Tyrosine Family Site-specific DNA Recombinases. Journal of Biological Chemistry, 2001, 276, 46612-46623.	3.4	6
43	Inhibition of Flp Recombinase by the Topoisomerase I-targeting Drugs, Camptothecin and NSC-314622. Journal of Biological Chemistry, 2001, 276, 6993-6997.	3.4	1
44	Geometry of site alignment during Int family recombination: antiparallel synapsis by the Flp recombinase. Journal of Molecular Biology, 2000, 298, 749-764.	4.2	61
45	Mg 2+ binding to tRNA revisited: the nonlinear poisson-boltzmann model 1 1Edited by B. Honig. Journal of Molecular Biology, 2000, 299, 813-825.	4.2	145
46	Xer Site-specific Recombination. Journal of Biological Chemistry, 1999, 274, 6763-6769.	3.4	10
47	The integrase family of recombinases: organization and function of the active site. Molecular Microbiology, 1999, 33, 449-456.	2.5	142
48	Wild-type Flp recombinase cleaves DNA in trans. EMBO Journal, 1999, 18, 784-791.	7.8	43
49	Unveiling Two Distinct Ribonuclease Activities and a Topoisomerase Activity in a Site-Specific DNA Recombinase. Molecular Cell, 1998, 1, 729-739.	9.7	42
50	Action of site-specific recombinases XerC and XerD on tethered Holliday junctions. EMBO Journal, 1997, 16, 3731-3743.	7.8	52
51	Effects of Holliday junction position on Xer-mediated recombination in vitro EMBO Journal, 1995, 14, 2651-2660.	7.8	33