Åžref DoÄŸÅŸan AkbaÅŸ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/156528/publications.pdf

Version: 2024-02-01

50 papers

1,228 citations

17 h-index 30 g-index

67 all docs

67 docs citations

67 times ranked

663 citing authors

#	Article	IF	Citations
1	Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load. Engineering With Computers, 2022, 38, 365-377.	3.5	31
2	Vibration Analysis of Cracked Microbeams by Using Finite Element Method., 2022, , 155-166.		O
3	Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support. JVC/Journal of Vibration and Control, 2021, 27, 1644-1655.	1.5	14
4	Vibration Analysis of Cracked Microbeams by Using Finite Element Method., 2021,, 1-12.		0
5	Forced Vibration Analysis of Composite Beams Reinforced by Carbon Nanotubes. Nanomaterials, 2021, 11, 571.	1.9	39
6	Vibration response of perforated thick beam under moving load. European Physical Journal Plus, 2021, 136, 1.	1.2	12
7	Superharmonic and subharmonic resonances of atomic force microscope subjected to crack failure mode based on the modified couple stress theory. European Physical Journal Plus, 2021, 136, 1.	1.2	10
8	Dynamic Analysis of Layered Functionally Graded Viscoelastic Deep Beams with Different Boundary Conditions Due to a Pulse Load. International Journal of Applied Mechanics, 2020, 12, 2050055.	1.3	9
9	Post-buckling analysis of a fiber reinforced composite beam with crack. Engineering Fracture Mechanics, 2019, 212, 70-80.	2.0	14
10	Hygrothermal Post-Buckling Analysis of Laminated Composite Beams. International Journal of Applied Mechanics, 2019, 11, 1950009.	1.3	20
11	BOŞLUK YAPILI NANO BİR ÇUBUK ELEMANIN BOYUNA ZORLANMIŞ TİTREŞİM ANALİZİ. Mþhendisl Tasarım Dergisi, 2019, 7, 736-743.	ik Bilimleri 0.1	i Ve
12	Forced vibration analysis of functionally graded porous deep beams. Composite Structures, 2018, 186, 293-302.	3.1	74
13	Forced vibration analysis of cracked nanobeams. Journal of the Brazilian Society of Mechanical Sciences and Engineering, $2018, 40, 1$.	0.8	22
14	Free Vibration Analysis of a Cross-Ply Laminated Plate in Thermal Environment. International Journal of Engineering and Applied Sciences, 2018, 10, 176-189.	0.1	4
15	Free Vibration of Edge Cracked Functionally Graded Microscale Beams Based on the Modified Couple Stress Theory. International Journal of Structural Stability and Dynamics, 2017, 17, 1750033.	1.5	56
16	Forced Vibration Analysis of Functionally Graded Nanobeams. International Journal of Applied Mechanics, 2017, 09, 1750100.	1.3	29
17	Thermal Effects on the Vibration of Functionally Graded Deep Beams with Porosity. International Journal of Applied Mechanics, 2017, 09, 1750076.	1.3	38
18	Stability of A Non-Homogenous Porous Plate by Using Generalized Differantial Quadrature Method. International Journal of Engineering and Applied Sciences, 2017, 9, 147-147.	0.1	11

#	Article	IF	Citations
19	Post-Buckling Analysis of Edge Cracked Columns Under Axial Compression Loads. International Journal of Applied Mechanics, 2016, 08, 1650086.	1.3	17
20	Wave propagation in edge cracked functionally graded beams under impact force. JVC/Journal of Vibration and Control, 2016, 22, 2443-2457.	1.5	32
21	Analytical solutions for static bending of edge cracked micro beams. Structural Engineering and Mechanics, 2016, 59, 579-599.	1.0	22
22	Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium. Smart Structures and Systems, 2016, 18, 1125-1143.	1.9	21
23	Static Analysis of a Nano Plate by Using Generalized Differential Quadrature Method. International Journal of Engineering and Applied Sciences, 2016, 8, 30-30.	0.1	6
24	Free vibration and bending of functionally graded beams resting on elastic foundation. , 2015, 1 , .		25
25	Large deflection analysis of edge cracked simple supported beams. Structural Engineering and Mechanics, 2015, 54, 433-451.	1.0	8
26	Post-Buckling Analysis of Axially Functionally Graded Three-Dimensional Beams. International Journal of Applied Mechanics, 2015, 07, 1550047.	1.3	26
27	On Post-Buckling Behavior of Edge Cracked Functionally Graded Beams Under Axial Loads. International Journal of Structural Stability and Dynamics, 2015, 15, 1450065.	1.5	20
28	Wave propagation of a functionally graded beam in thermal environments. Steel and Composite Structures, 2015, 19, 1421-1447.	1.3	39
29	FREE VIBRATION ANALYSIS OF EDGE CRACKED FUNCTIONALLY GRADED BEAMS RESTING ON WINKLER-PASTERNAK FOUNDATION. International Journal of Engineering and Applied Sciences, 2015, 7, 1-1.	0.1	6
30	Large post-buckling behavior of Timoshenko beams under axial compression loads. Structural Engineering and Mechanics, 2014, 51, 955-971.	1.0	6
31	Wave Propagation Analysis of Edge Cracked Circular Beams under Impact Force. PLoS ONE, 2014, 9, e100496.	1.1	12
32	WAVE PROPAGATION ANALYSIS OF EDGE CRACKED BEAMS RESTING ON ELASTIC FOUNDATION. International Journal of Engineering and Applied Sciences, 2014, 6, 40-40.	0.1	8
33	FREE VIBRATION OF AXIALLY FUNCTIONALLY GRADED BEAMS IN THERMAL ENVIRONMENT. International Journal of Engineering and Applied Sciences, 2014, 6, 37-37.	0.1	10
34	Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory. Composite Structures, 2013, 95, 740-747.	3.1	126
35	Post-Buckling Analysis of Functionally Graded Three-Dimensional Beams Under the Influence of Temperature. Journal of Thermal Stresses, 2013, 36, 1233-1254.	1.1	18
36	Geometrically Nonlinear Static Analysis of Edge Cracked Timoshenko Beams Composed of Functionally Graded Material. Mathematical Problems in Engineering, 2013, 2013, 1-14.	0.6	12

#	Article	IF	Citations
37	Thermal post-buckling analysis of functionally graded beams with temperature-dependent physical properties. Steel and Composite Structures, 2013, 15, 481-505.	1.3	21
38	Wave propagation in a microbeam based on the modified couple stress theory. Structural Engineering and Mechanics, 2013, 46, 417-431.	1.0	27
39	Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load. Composite Structures, 2012, 94, 2358-2364.	3.1	125
40	Post-buckling analysis of Timoshenko beams made of functionally graded material under thermal loading. Structural Engineering and Mechanics, 2012, 41, 775-789.	1.0	22
41	Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading. Structural Engineering and Mechanics, 2012, 44, 109-125.	1.0	9
42	Large displacement static analysis of a cantilever Timoshenko beam composed of functionally graded material. Science and Engineering of Composite Materials, 2011, 18, 21-34.	0.6	38
43	Post-buckling analysis of Timoshenko beams with various boundary conditions under non-uniform thermal loading. Structural Engineering and Mechanics, 2011, 40, 347-371.	1.0	16
44	Vibration analysis of carbon nanotubeâ€reinforced composite microbeams. Mathematical Methods in the Applied Sciences, 0, , .	1.2	68
45	Dynamic Analysis of Functionally Graded Porous Microbeams under Moving Load. Transport in Porous Media, 0, , 1.	1.2	9
46	Static, Vibration, and Buckling Analysis of Nanobeams. , 0, , .		8
47	Fonksiyonel derecelendirilmiÅŸ ortotropik bir kiriÅŸin statik ve titreÅŸim davranışlarının incelenmesi. BalÅ Üniversitesi Fen Bilimleri EnstitÃ⅓sÃ⅓ Dergisi, 0, , 1-14.	tkesir 0.2	4
48	İki Malzemeli Kompozit Bir Kirişin Serbest ve Zorlanmış Titreşimlerinin İncelenmesi. Journal of Polytech 0, , .	nic 0.4	1
49	ćatlak İçeren Bir Çerçeve Taşıyıcı Sistemin Zorlanmış Titreşim Analizi. Journal of Polytechnic, (Ͻ, ϼ.4	2
50	Vibration Analysis of a Sandwich Plate with Laminated Face and Porous Core Layers Resting on Elastic Foundation. Journal of Innovative Science and Engineering (JISE), 0, , .	0.7	1