
Jarrod E Church

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1564900/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Comparison of the Gluco-Regulatory Responses to High-Intensity Interval Exercise and Resistance Exercise. International Journal of Environmental Research and Public Health, 2021, 18, 287.	2.6	3
2	Oral fucoidan improves muscle size and strength in mice. Physiological Reports, 2021, 9, e14730.	1.7	6
3	The TrkB agonist, 7,8-dihydroxyflavone, impairs fracture healing in mice. Journal of Musculoskeletal Neuronal Interactions, 2021, 21, 263-271.	0.1	0
4	Mild Closed-Head Injury in Conscious Rats Causes Transient Neurobehavioral and Glial Disturbances: A Novel Experimental Model of Concussion. Journal of Neurotrauma, 2019, 36, 2260-2271.	3.4	25
5	The selective TrkA agonist, gambogic amide, promotes osteoblastic differentiation and improves fracture healing in mice. Journal of Musculoskeletal Neuronal Interactions, 2019, 19, 94-103.	0.1	9
6	Gambogic amide, a selective TrkA agonist, does not improve outcomes from traumatic brain injury in mice. Brain Injury, 2018, 32, 257-268.	1.2	14
7	A Concomitant Muscle Injury Does Not Worsen Traumatic Brain Injury Outcomes in Mice. Frontiers in Neurology, 2018, 9, 1089.	2.4	9
8	Closed head experimental traumatic brain injury increases size and bone volume of callus in mice with concomitant tibial fracture. Scientific Reports, 2016, 6, 34491.	3.3	37
9	Functional β-Adrenoceptors Are Important for Early Muscle Regeneration in Mice through Effects on Myoblast Proliferation and Differentiation. PLoS ONE, 2014, 9, e101379.	2.5	13
10	Alterations in Notch signalling in skeletal muscles from <i>mdx</i> and <i>dko</i> dystrophic mice and patients with Duchenne muscular dystrophy. Experimental Physiology, 2014, 99, 675-687.	2.0	25
11	Parvalbumin Gene Transfer Impairs Skeletal Muscle Contractility in Old Mice. Human Gene Therapy, 2012, 23, 824-836.	2.7	8
12	Hsp72 preserves muscle function and slows progression of severe muscular dystrophy. Nature, 2012, 484, 394-398.	27.8	243
13	Early functional muscle regeneration after myotoxic injury in mice is unaffected by nNOS absence. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R1358-R1366.	1.8	10
14	Inhibition of endothelial nitric oxide synthase by the lipid phosphatase PTEN. Vascular Pharmacology, 2010, 52, 191-198.	2.1	15
15	Novel role for βâ€∎drenergic signalling in skeletal muscle growth, development and regeneration. Clinical and Experimental Pharmacology and Physiology, 2010, 37, 397-401.	1.9	32
16	Role of local production of endothelium-derived nitric oxide on cGMP signaling and <i>S</i> -nitrosylation. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H112-H118.	3.2	32
17	Cardioprotection Induced by Adenosine A1 Receptor Agonists in a Cardiac Cell Ischemia Model Involves Cooperative Activation of Adenosine A2A and A2B Receptors by Endogenous Adenosine. Journal of Cardiovascular Pharmacology, 2009, 53, 424-433.	1.9	31
18	The role of β-adrenoceptor signaling in skeletal muscle: therapeutic implications for muscle wasting disorders. Current Opinion in Clinical Nutrition and Metabolic Care, 2009, 12, 601-606.	2.5	19

JARROD E CHURCH

#	Article	IF	CITATIONS
19	Selective coupling of type 6 adenylyl cyclase with type 2 IP3 receptors mediates direct sensitization of IP3 receptors by cAMP. Journal of Cell Biology, 2008, 183, 297-311.	5.2	93
20	Selective coupling of type 6 adenylyl cyclase with type 2 IP ₃ receptors mediates direct sensitization of IP ₃ receptors by cAMP. Journal of General Physiology, 2008, 132, i5-i5.	1.9	1
21	Novel Mechanism of Activation of NADPH Oxidase 5. Journal of Biological Chemistry, 2007, 282, 6494-6507.	3.4	186
22	Functional Relevance of Golgi- and Plasma Membrane-Localized Endothelial NO Synthase in Reconstituted Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1015-1021.	2.4	87
23	Differences in eNOS Activity Because of Subcellular Localization Are Dictated by Phosphorylation State Rather than the Local Calcium Environment. Journal of Biological Chemistry, 2006, 281, 1477-1488.	3.4	68
24	Functional Relevance of Golgi and Plasma Membrane Localized Endothelial Nitric Oxide Synthase (eNOS) in Reconstituted Endothelial cells. FASEB Journal, 2006, 20, A721.	0.5	0
25	Src Kinase Activates Endothelial Nitric-oxide Synthase by Phosphorylating Tyr-83. Journal of Biological Chemistry, 2005, 280, 35943-35952.	3.4	94
26	Modulation of intracellular Ca2+ levels by Scorpaenidae venoms. Toxicon, 2003, 41, 679-689.	1.6	22
27	Stonefish (Synanceia trachynis) Antivenom: In Vitro Efficacy and Clinical Use. Toxin Reviews, 2003, 22, 69-76.	1.5	14
28	Adrenergic and cholinergic activity contributes to the cardiovascular effects of lionfish (Pterois) Tj ETQq0 0 0 rgBT	Overlock	۲ 10 Tf 50 38 40

29	The pharmacological activity of fish venoms. Toxicon, 2002, 40, 1083-1093.	1.6	120
30	Stonefish (Synanceia spp.) antivenom neutralises the in vitro and in vivo cardiovascular activity of soldierfish (Gymnapistes marmoratus) venom. Toxicon, 2001, 39, 319-324.	1.6	29
31	Dose-dependent cardiovascular and neuromuscular effects of stonefish (Synanceja trachynis) venom. Toxicon, 2000, 38, 391-407.	1.6	37