Jonathan T Ting

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1564711/publications.pdf

Version: 2024-02-01

147566 264894 7,416 46 31 42 citations h-index g-index papers 68 68 68 10439 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature, 2011, 472, 437-442.	13.7	1,273
2	Flow of Cortical Activity Underlying a Tactile Decision in Mice. Neuron, 2014, 81, 179-194.	3.8	622
3	Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nature Methods, 2011, 8, 745-752.	9.0	605
4	A Suite of Transgenic Driver and Reporter Mouse Lines with Enhanced Brain-Cell-Type Targeting and Functionality. Cell, 2018, 174, 465-480.e22.	13.5	571
5	Acute Brain Slice Methods for Adult and Aging Animals: Application of Targeted Patch Clamp Analysis and Optogenetics. Methods in Molecular Biology, 2014, 1183, 221-242.	0.4	533
6	Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature, 2021, 598, 111-119.	13.7	361
7	Classification of electrophysiological and morphological neuron types in the mouse visual cortex. Nature Neuroscience, 2019, 22, 1182-1195.	7.1	333
8	A multimodal cell census and atlas of the mammalian primary motor cortex. Nature, 2021, 598, 86-102.	13.7	316
9	Integrated Morphoelectric and Transcriptomic Classification of Cortical GABAergic Cells. Cell, 2020, 183, 935-953.e19.	13.5	290
10	Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles. Nature Neuroscience, 2011, 14, 1118-1120.	7.1	248
11	Preparation of Acute Brain Slices Using an Optimized N -Methyl-D-glucamine Protective Recovery Method. Journal of Visualized Experiments, 2018, , .	0.2	182
12	Human neocortical expansion involves glutamatergic neuron diversification. Nature, 2021, 598, 151-158.	13.7	160
13	The ethics of experimenting with human brain tissue. Nature, 2018, 556, 429-432.	13.7	139
14	h-Channels Contribute to Divergent Intrinsic Membrane Properties of Supragranular Pyramidal Neurons in Human versus Mouse Cerebral Cortex. Neuron, 2018, 100, 1194-1208.e5.	3.8	134
15	Amyloid precursor protein overexpression depresses excitatory transmission through both presynaptic and postsynaptic mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 353-358.	3.3	119
16	Neurobiology of obsessive–compulsive disorder: insights into neural circuitry dysfunction through mouse genetics. Current Opinion in Neurobiology, 2011, 21, 842-848.	2.0	113
17	Functional Consequences of Mutations in Postsynaptic Scaffolding Proteins and Relevance to Psychiatric Disorders. Annual Review of Neuroscience, 2012, 35, 49-71.	5.0	103
18	Glutamatergic Synaptic Dysfunction and Obsessive-Compulsive Disorder. Current Chemical Genomics, 2008, 2, 62-75.	2.0	102

#	Article	IF	Citations
19	An Ultra-Sensitive Step-Function Opsin for Minimally Invasive Optogenetic Stimulation in Mice and Macaques. Neuron, 2020, 107, 38-51.e8.	3.8	99
20	Enhancer viruses for combinatorial cell-subclass-specific labeling. Neuron, 2021, 109, 1449-1464.e13.	3.8	93
21	Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex. Cell Reports, 2021, 34, 108754.	2.9	88
22	Sapap3 Deletion Anomalously Activates Short-Term Endocannabinoid-Mediated Synaptic Plasticity. Journal of Neuroscience, 2011, 31, 9563-9573.	1.7	78
23	A robust ex vivo experimental platform for molecular-genetic dissection of adult human neocortical cell types and circuits. Scientific Reports, 2018, 8, 8407.	1.6	77
24	Transcriptomic evidence that von Economo neurons are regionally specialized extratelencephalic-projecting excitatory neurons. Nature Communications, 2020, 11, 1172.	5.8	70
25	Next-generation transgenic mice for optogenetic analysis of neural circuits. Frontiers in Neural Circuits, 2013, 7, 160.	1.4	62
26	Signature morpho-electric, transcriptomic, and dendritic properties of human layer 5 neocortical pyramidal neurons. Neuron, 2021, 109, 2914-2927.e5.	3.8	54
27	Development of transgenic animals for optogenetic manipulation of mammalian nervous system function: Progress and prospects for behavioral neuroscience. Behavioural Brain Research, 2013, 255, 3-18.	1.2	49
28	Transgenic labeling of parvalbumin-expressing neurons with tdTomato. Neuroscience, 2016, 321, 236-245.	1.1	43
29	Single-Cell Profiling of an InÂVitro Model of Human Interneuron Development Reveals Temporal Dynamics of Cell Type Production and Maturation. Neuron, 2017, 93, 1035-1048.e5.	3.8	43
30	Capture of Dense Core Vesicles at Synapses by JNK-Dependent Phosphorylation of Synaptotagmin-4. Cell Reports, 2017, 21, 2118-2133.	2.9	39
31	Distinctive Structural and Molecular Features of Myelinated Inhibitory Axons in Human Neocortex. ENeuro, 2018, 5, ENEURO.0297-18.2018.	0.9	35
32	Synaptotagmin IV Does Not Alter Excitatory Fast Synaptic Transmission or Fusion Pore Kinetics in Mammalian CNS Neurons. Journal of Neuroscience, 2006, 26, 372-380.	1.7	34
33	SnapShot: Autism and the Synapse. Cell, 2011, 147, 706-706.e1.	13.5	34
34	Recombineering strategies for developing next generation BAC transgenic tools for optogenetics and beyond. Frontiers in Behavioral Neuroscience, 2014, 8, 111.	1.0	34
35	Scaled, high fidelity electrophysiological, morphological, and transcriptomic cell characterization. ELife, 2021, 10, .	2.8	33
36	SmartScope2: Simultaneous Imaging and Reconstruction of Neuronal Morphology. Scientific Reports, 2017, 7, 9325.	1.6	8

#	Article	lF	CITATIONS
37	Two eARCHT3.0 Lines for Optogenetic Silencing of Dopaminergic and Serotonergic Neurons. Frontiers in Neural Circuits, 2019, 13, 4.	1.4	5
38	Functional Enhancer Elements Drive Subclass-Selective Expression from Mouse to Primate Neocortex. SSRN Electronic Journal, 0, , .	0.4	5
39	Improving the Efficacy and Accessibility of Intracranial Viral Vector Delivery in Non-Human Primates. Pharmaceutics, 2022, 14, 1435.	2.0	4
40	Unfolding neurodevelopmental disorders: Found in translation. Nature Medicine, 2011, 17, 1352-1353.	15.2	3
41	Toward an Integrated Classification of Cell Types: Morphoelectric and Transcriptomic Characterization of Individual GABAergic Cortical Neurons. SSRN Electronic Journal, 0, , .	0.4	3
42	A Suite of Transgenic Driver and Reporter Mouse Lines with Enhanced Brain Cell Type Targeting and Functionality. SSRN Electronic Journal, 0, , .	0.4	2
43	Nonglobal Homeostatic Synaptic Plasticity?. Journal of Neuroscience, 2006, 26, 10937-10938.	1.7	1
44	Injections of AAV Vectors for Optogenetics in Anesthetized and Awake Behaving Non-Human Primate Brain. Journal of Visualized Experiments, 2021, , .	0.2	1
45	Targeting Beta-Arrestin Dependent Signaling in the Treatment of Parkinson's Disease. , 2014, , 103-104.		0
46	An Ultra-Sensitive Step-Function Opsin for Minimally Invasive Optogenetic Stimulation in Mice and Macaques. SSRN Electronic Journal, 0, , .	0.4	0