
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1564572/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Possible use as biofuels of monoaromatic oxygenates produced by lignin catalytic conversion: A review. Catalysis Today, 2023, 408, 150-167.	2.2	4
2	Variable pressure JSR study of low temperature oxidation chemistry of n-heptane by synchrotron photoionization mass spectrometry. Combustion and Flame, 2022, 240, 111946.	2.8	7
3	Virtual Special Issue of Recent Advances in Fundamentals of Biomass and Biofuel Combustion. Energy & Fuels, 2022, 36, 1-5.	2.5	2
4	Accounting for molecular flexibility in photoionization: case of <i>tert</i> -butyl hydroperoxide. Physical Chemistry Chemical Physics, 2022, 24, 10826-10837.	1.3	3
5	Exploring low temperature oxidation of iso-octane under atmospheric pressure. Combustion and Flame, 2022, 243, 112019.	2.8	9
6	Chemistry deriving from OOQOOH radicals in alkane low-temperature oxidation: A first combined theoretical and electron-ion coincidence mass spectrometry study. Proceedings of the Combustion Institute, 2021, 38, 309-319.	2.4	16
7	Ammonia–methane interaction in jet-stirred and flow reactors: An experimental and kinetic modeling study. Proceedings of the Combustion Institute, 2021, 38, 345-353.	2.4	47
8	Pyrolysis and Combustion Chemistry of Pyrrole, a Reference Component for Bio-oil Surrogates: Jet-Stirred Reactor Experiments and Kinetic Modeling. Energy & Fuels, 2021, 35, 7265-7284.	2.5	26
9	Emissions from a Domestic Wood Heating Appliance: Experimental Measurements and Numerical Study Using an Equivalent Reactor Network (ERN) Approach Coupled with a Detailed Chemical Mechanism. Energy & Fuels, 2021, 35, 18680-18698.	2.5	5
10	Jet-Stirred Reactor Study of Low-Temperature Neopentane Oxidation: A Combined Theoretical, Chromatographic, Mass Spectrometric, and PEPICO Analysis. Energy & Fuels, 2021, 35, 19689-19704.	2.5	12
11	Experimental and modeling study of benzaldehyde oxidation. Combustion and Flame, 2020, 211, 124-132.	2.8	24
12	The role of chemistry in the oscillating combustion of hydrocarbons: An experimental and theoretical study. Chemical Engineering Journal, 2020, 385, 123401.	6.6	21
13	Insights into nitromethane combustion from detailed kinetic modeling – Pyrolysis experiments in jet-stirred and flow reactors. Fuel, 2020, 261, 116349.	3.4	32
14	Isomer-sensitive characterization of low temperature oxidation reaction products by coupling a jet-stirred reactor to an electron/ion coincidence spectrometer: case of <i>n</i> -pentane. Physical Chemistry Chemical Physics, 2020, 22, 1222-1241.	1.3	28
15	Detailed experimental and kinetic modeling study of 3 arene pyrolysis. International Journal of Chemical Kinetics, 2020, 52, 785-795.	1.0	4
16	Combustion of <i>n</i> -C ₃ –C ₆ Linear Alcohols: An Experimental and Kinetic Modeling Study. Part I: Reaction Classes, Rate Rules, Model Lumping, and Validation. Energy & Fuels, 2020, 34, 14688-14707.	2.5	19
17	An experimental and modeling study of the oxidation of n―heptane, ethylbenzene, and n―butylbenzene in a jetâ€stirred reactor at pressures up to 10Âbar. International Journal of Chemical Kinetics, 2020, 52, 1006-1021.	1.0	7
18	Combustion of <i>n</i> -C ₃ –C ₆ Linear Alcohols: An Experimental and Kinetic Modeling Study. Part II: Speciation Measurements in a Jet-Stirred Reactor, Ignition Delay Time Measurements in a Rapid Compression Machine, Model Validation, and Kinetic Analysis. Energy & Fuels. 2020. 34, 14708-14725.	2.5	20

#	Article	IF	CITATIONS
19	Experimental and kinetic modeling study of the pyrolysis and oxidation of diethylamine. Fuel, 2020, 275, 117744.	3.4	11
20	An experimental, theoretical and kinetic-modeling study of the gas-phase oxidation of ammonia. Reaction Chemistry and Engineering, 2020, 5, 696-711.	1.9	275
21	Elevated pressure low-temperature oxidation of linear five-heavy-atom fuels: diethyl ether, n-pentane, and their mixture. Zeitschrift Fur Physikalische Chemie, 2020, 234, 1269-1293.	1.4	11
22	The identification and quantification of ketohydroperoxides and derived species produced during fuel low-temperature oxidation. AIP Conference Proceedings, 2020, , .	0.3	0
23	Methylcyclohexane pyrolysis and oxidation in a jet-stirred reactor. Proceedings of the Combustion Institute, 2019, 37, 409-417.	2.4	40
24	A study of chlorobenzene pyrolysis. Proceedings of the Combustion Institute, 2019, 37, 399-407.	2.4	14
25	The thermal decomposition of furfural: molecular chemistry unraveled. Proceedings of the Combustion Institute, 2019, 37, 445-452.	2.4	16
26	Low-temperature gas-phase oxidation of diethyl ether: Fuel reactivity and fuel-specific products. Proceedings of the Combustion Institute, 2019, 37, 511-519.	2.4	52
27	An experimental and kinetic modelling study of n-C4C6 aldehydes oxidation in a jet-stirred reactor. Proceedings of the Combustion Institute, 2019, 37, 389-397.	2.4	21
28	The sensitizing effects of NO2 and NO on methane low temperature oxidation in a jet stirred reactor. Proceedings of the Combustion Institute, 2019, 37, 667-675.	2.4	124
29	Probing the low-temperature chemistry of di-n-butyl ether: Detection of previously unobserved intermediates. Combustion and Flame, 2019, 210, 9-24.	2.8	26
30	Development of a detailed kinetic model for the combustion of biomass. Fuel, 2019, 242, 756-774.	3.4	44
31	First Study of the Pyrolysis of a Halogenated Ester: Methyl Chloroacetate. Industrial & Engineering Chemistry Research, 2019, 58, 9331-9338.	1.8	4
32	A first evaluation of butanoic and pentanoic acid oxidation kinetics. Chemical Engineering Journal, 2019, 373, 973-984.	6.6	27
33	Effects of Bath Gas and NO _{<i>x</i>} Addition on <i>n</i> -Pentane Low-Temperature Oxidation in a Jet-Stirred Reactor. Energy & Fuels, 2019, 33, 5655-5663.	2.5	24
34	Exploring hydroperoxides in combustion: History, recent advances and perspectives. Progress in Energy and Combustion Science, 2019, 73, 132-181.	15.8	119
35	First detection of a key intermediate in the oxidation of fuel + NO systems: HONO. Chemical Physics Letters, 2019, 719, 22-26.	1.2	21
36	A model of tetrahydrofuran low-temperature oxidation based on theoretically calculated rate constants. Combustion and Flame, 2018, 191, 252-269.	2.8	36

#	Article	IF	CITATIONS
37	Experimental and modeling study of the pyrolysis and combustion of dimethoxymethane. Combustion and Flame, 2018, 190, 270-283.	2.8	78
38	The importance of endothermic pyrolysis reactions in the understanding of diesel spray combustion. Fuel, 2018, 224, 302-310.	3.4	13
39	A study of thermal decomposition of bromoethane. Journal of Analytical and Applied Pyrolysis, 2018, 136, 199-207.	2.6	7
40	Oscillatory Behavior in Methane Combustion: Influence of the Operating Parameters. Energy & Fuels, 2018, 32, 10088-10099.	2.5	22
41	The oxidation of the novel lignocellulosic biofuel γ-valerolactone in a low pressure flame. Proceedings of the Combustion Institute, 2017, 36, 577-585.	2.4	8
42	A study of the low-temperature oxidation of a long chain aldehyde: n-hexanal. Proceedings of the Combustion Institute, 2017, 36, 365-372.	2.4	11
43	Measuring hydroperoxide chain-branching agents during n-pentane low-temperature oxidation. Proceedings of the Combustion Institute, 2017, 36, 333-342.	2.4	66
44	An experimental and modelling study of n-pentane oxidation in two jet-stirred reactors: The importance of pressure-dependent kinetics and new reaction pathways. Proceedings of the Combustion Institute, 2017, 36, 441-448.	2.4	92
45	Hydroperoxide Measurements During Low-Temperature Gas-Phase Oxidation of <i>n-</i> Heptane and <i>n-</i> Decane. Journal of Physical Chemistry A, 2017, 121, 1861-1876.	1.1	31
46	Comparative experimental and modeling study of the low- to moderate-temperature oxidation chemistry of 2,5-dimethylfuran, 2-methylfuran, and furan. Combustion and Flame, 2017, 181, 251-269.	2.8	61
47	Revisiting 1-hexene low-temperature oxidation. Combustion and Flame, 2017, 181, 283-299.	2.8	29
48	Experimental and modeling study of the pyrolysis and combustion of 2-methyl-tetrahydrofuran. Combustion and Flame, 2017, 176, 409-428.	2.8	28
49	Experimental and kinetic modeling study of the pyrolysis and oxidation of 1,5-hexadiene: The reactivity of allylic radicals and their role in the formation of aromatics. Fuel, 2017, 208, 779-790.	3.4	17
50	Gasâ€Phase Oxidation of Methylâ€10â€undecenoate in a Jetâ€Stirred Reactor. International Journal of Chemical Kinetics, 2017, 49, 711-728.	1.0	3
51	Experimental and modeling study of 1-octene jet-stirred reactor oxidation. Fuel, 2017, 207, 763-775.	3.4	10
52	IMPROOF: Integrated Model Guided Process Optimization of Steam Cracking Furnaces. Smart Innovation, Systems and Technologies, 2017, , 589-600.	0.5	2
53	Diethyl ether pyrolysis study in a jet-stirred reactor. Journal of Analytical and Applied Pyrolysis, 2016, 121, 173-176.	2.6	25
54	Understanding the reactivity of unsaturated alcohols: Experimental and kinetic modeling study of the pyrolysis and oxidation of 3-methyl-2-butenol and 3-methyl-3-butenol. Combustion and Flame, 2016, 171, 237-251.	2.8	24

#	Article	IF	CITATIONS
55	An updated experimental and kinetic modeling study of n-heptane oxidation. Combustion and Flame, 2016, 172, 116-135.	2.8	307
56	Study of the Formation of the First Aromatic Rings in the Pyrolysis of Cyclopentene. Journal of Physical Chemistry A, 2016, 120, 668-682.	1.1	19
57	A comprehensive experimental and modeling study of isobutene oxidation. Combustion and Flame, 2016, 167, 353-379.	2.8	282
58	Experimental and modeling investigation of the effect of the unsaturation degree on the gas-phase oxidation of fatty acid methyl esters found in biodiesel fuels. Combustion and Flame, 2016, 164, 346-362.	2.8	42
59	Experimental and modeling study of ultra-rich oxidation of n-heptane. Fuel, 2015, 144, 358-368.	3.4	28
60	Low-Temperature Combustion Mechanisms. , 2015, , .		0
61	Experimental and modeling study of burning velocities for alkyl aromatic components relevant to diesel fuels. Proceedings of the Combustion Institute, 2015, 35, 341-348.	2.4	43
62	An experimental and modeling study of propene oxidation. Part 2: Ignition delay time and flame speed measurements. Combustion and Flame, 2015, 162, 296-314.	2.8	270
63	Determining predictive uncertainties and global sensitivities for large parameter systems: A case study for n -butane oxidation. Proceedings of the Combustion Institute, 2015, 35, 607-616.	2.4	31
64	The oxidation of large alkylbenzenes: An experimental and modeling study. Proceedings of the Combustion Institute, 2015, 35, 349-356.	2.4	34
65	Measurements of Laminar Burning Velocities above Atmospheric Pressure Using the Heat Flux Method—Application to the Case of <i>n-</i> Pentane. Energy & Fuels, 2015, 29, 398-404.	2.5	49
66	Experimental Study of Tetrahydrofuran Oxidation and Ignition in Low-Temperature Conditions. Energy & Fuels, 2015, 29, 6118-6125.	2.5	33
67	Experimental and Kinetic Modeling Study of 2-Methyl-2-Butene: Allylic Hydrocarbon Kinetics. Journal of Physical Chemistry A, 2015, 119, 7462-7480.	1.1	62
68	An experimental and modeling study of the combustion of tetrahydrofuran. Combustion and Flame, 2015, 162, 1899-1918.	2.8	72
69	Experimental and Modeling Investigation of the Low-Temperature Oxidation of Dimethyl Ether. Journal of Physical Chemistry A, 2015, 119, 7905-7923.	1.1	85
70	Comparison study of the gas-phase oxidation of alkylbenzenes and alkylcyclohexanes. Chemical Engineering Science, 2015, 131, 49-62.	1.9	28
71	Pyrolysis and combustion chemistry of tetrahydropyran: Experimental and modeling study. Combustion and Flame, 2015, 162, 4283-4303.	2.8	19
72	Unimolecular decomposition of tetrahydrofuran: Carbene vs. diradical pathways. Proceedings of the Combustion Institute, 2015, 35, 533-541.	2.4	30

#	Article	IF	CITATIONS
73	Influence of substituted furans on the formation of Polycyclic Aromatic Hydrocarbons in flames. Proceedings of the Combustion Institute, 2015, 35, 1735-1743.	2.4	59
74	Laminar burning velocity of gasolines with addition of ethanol. Fuel, 2014, 115, 162-169.	3.4	248
75	Progress in Understanding Lowâ€Temperature Organic Compound Oxidation Using a Jetâ€Stirred Reactor. International Journal of Chemical Kinetics, 2014, 46, 619-639.	1.0	80
76	An experimental and modeling study of propene oxidation. Part 1: Speciation measurements in jet-stirred and flow reactors. Combustion and Flame, 2014, 161, 2765-2784.	2.8	251
77	Products from the Oxidation of Linear Isomers of Hexene. Journal of Physical Chemistry A, 2014, 118, 673-683.	1.1	50
78	Experimental Investigation of the Low Temperature Oxidation of the Five Isomers of Hexane. Journal of Physical Chemistry A, 2014, 118, 5573-5594.	1.1	44
79	Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography – Part III: 2,5-Dimethylfuran. Combustion and Flame, 2014, 161, 780-797.	2.8	127
80	Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography – Part II: 2-Methylfuran. Combustion and Flame, 2014, 161, 766-779.	2.8	110
81	Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography – Part I: Furan. Combustion and Flame, 2014, 161, 748-765.	2.8	117
82	A high temperature and atmospheric pressure experimental and detailed chemical kinetic modelling study of 2-methyl furan oxidation. Proceedings of the Combustion Institute, 2013, 34, 225-232.	2.4	121
83	Quantification of OH and HO ₂ radicals during the low-temperature oxidation of hydrocarbons by Fluorescence Assay by Gas Expansion technique. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20014-20017.	3.3	65
84	An experimental and modeling study of the low- and high-temperature oxidation of cyclohexane. Combustion and Flame, 2013, 160, 2319-2332.	2.8	71
85	Experimental and modeling study of the oxidation of n-butane in a jet stirred reactor using cw-CRDS measurements. Physical Chemistry Chemical Physics, 2013, 15, 19686.	1.3	42
86	Shock Tube and Chemical Kinetic Modeling Study of the Oxidation of 2,5-Dimethylfuran. Journal of Physical Chemistry A, 2013, 117, 1371-1392.	1.1	108
87	A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation. Combustion and Flame, 2013, 160, 2291-2318.	2.8	143
88	New experimental evidence and modeling study of the ethylbenzene oxidation. Proceedings of the Combustion Institute, 2013, 34, 325-333.	2.4	48
89	Experimental and Modeling Study of Premixed Laminar Flames of Ethanol and Methane. Energy & Fuels, 2013, 27, 2226-2245.	2.5	44
90	Experimental study of the structure of laminar premixed flames of ethanol/methane/oxygen/argon. Combustion, Explosion and Shock Waves, 2013, 49, 11-18.	0.3	11

#	Article	IF	CITATIONS
91	Low temperature oxidation of benzene and toluene in mixture with n-decane. Proceedings of the Combustion Institute, 2013, 34, 297-305.	2.4	42
92	Modeling Combustion with Detailed Kinetic Mechanisms. Green Energy and Technology, 2013, , 17-57.	0.4	4
93	Automatic Generation of Detailed Mechanisms. Green Energy and Technology, 2013, , 59-92.	0.4	18
94	Specificities Related to Detailed Kinetic Models for the Combustion of Oxygenated Fuels Components. Green Energy and Technology, 2013, , 93-109.	0.4	5
95	Quantification of Hydrogen Peroxide during the Low-Temperature Oxidation of Alkanes. Journal of the American Chemical Society, 2012, 134, 11944-11947.	6.6	46
96	Improvement of the Modeling of the Low-Temperature Oxidation of <i>n</i> -Butane: Study of the Primary Reactions. Journal of Physical Chemistry A, 2012, 116, 6142-6158.	1.1	72
97	Study of the Low Temperature Oxidation of Propane. Journal of Physical Chemistry A, 2012, 116, 12214-12228.	1.1	57
98	Progress in detailed kinetic modeling of the combustion of oxygenated components of biofuels. Energy, 2012, 43, 4-18.	4.5	149
99	Measurements of flat-flame velocities of diethyl ether in air. Energy, 2012, 43, 140-145.	4.5	47
100	JTHERGAS: Thermodynamic estimation from 2D graphical representations of molecules. Energy, 2012, 43, 161-171.	4.5	12
101	Experimental and modeling investigation of the low-temperature oxidation of n-heptane. Combustion and Flame, 2012, 159, 3455-3471.	2.8	165
102	Detailed Product Analysis during Low- and Intermediate-Temperature Oxidation of Ethylcyclohexane. Journal of Physical Chemistry A, 2012, 116, 5100-5111.	1.1	44
103	Experimental and modeling study of the oxidation of n-butylbenzene. Combustion and Flame, 2012, 159, 1399-1416.	2.8	59
104	Detection of some stable species during the oxidation of methane by coupling a jet-stirred reactor (JSR) to cw-CRDS. Chemical Physics Letters, 2012, 534, 1-7.	1.2	26
105	Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models. Chemical Society Reviews, 2011, 40, 4762.	18.7	111
106	Detailed product analysis during the low temperature oxidation of n-butane. Physical Chemistry Chemical Physics, 2011, 13, 296-308.	1.3	108
107	Measurements of Laminar Flame Velocity for Components of Natural Gas. Energy & Fuels, 2011, 25, 3875-3884.	2.5	181

Laminar Flame Velocity of Components of Natural Gas. , 2011, , .

#	Article	IF	CITATIONS
109	Modeling study of the low-temperature oxidation of large methyl esters from C11 to C19. Proceedings of the Combustion Institute, 2011, 33, 391-398.	2.4	63
110	Oxidation of small unsaturated methyl and ethyl esters. International Journal of Chemical Kinetics, 2011, 43, 204-218.	1.0	32
111	Experimental and modeling study of the thermal decomposition of methyl decanoate. Combustion and Flame, 2011, 158, 1288-1300.	2.8	50
112	An experimental and kinetic investigation of premixed furan/oxygen/argon flames. Combustion and Flame, 2011, 158, 756-773.	2.8	113
113	Mass spectra of cyclic ethers formed in the low-temperature oxidation of a series of n-alkanes. Fuel, 2011, 90, 528-535.	3.4	20
114	New experimental evidences about the formation and consumption of ketohydroperoxides. Proceedings of the Combustion Institute, 2011, 33, 325-331.	2.4	64
115	A detailed kinetic modeling study of toluene oxidation in a premixed laminar flame. Proceedings of the Combustion Institute, 2011, 33, 233-241.	2.4	79
116	Thermal and Kinetic Impact of CO, CO ₂ , and H ₂ O on the Postoxidation of IC-Engine Exhaust Gases. Combustion Science and Technology, 2010, 182, 39-59.	1.2	23
117	Experimental study of the oxidation of methyl oleate in a jet-stirred reactor. Combustion and Flame, 2010, 157, 1220-1229.	2.8	81
118	Modeling of the oxidation of methyl esters—Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor. Combustion and Flame, 2010, 157, 2035-2050.	2.8	124
119	Experimental study of the structure of a lean premixed indane/CH4/O2/Ar flame. Combustion, Explosion and Shock Waves, 2010, 46, 132-139.	0.3	7
120	Experimental Confirmation of the Lowâ€Temperature Oxidation Scheme of Alkanes. Angewandte Chemie - International Edition, 2010, 49, 3169-3172.	7.2	180
121	Oxidation of methyl and ethyl butanoates. International Journal of Chemical Kinetics, 2010, 42, 226-252.	1.0	78
122	Lean methane premixed laminar flames doped by components of diesel fuel II: n-Propylcyclohexane. Combustion and Flame, 2010, 157, 75-90.	2.8	28
123	A lean methane premixed laminar flame doped with components of diesel fuel part III: Indane and comparison between n-butylbenzene, n-propylcyclohexane and indane. Combustion and Flame, 2010, 157, 1236-1260.	2.8	30
124	An experimental and kinetic modeling study of the autoignition of α-methylnaphthalene/air and α-methylnaphthalene/n-decane/air mixtures at elevated pressures. Combustion and Flame, 2010, 157, 1976-1988.	2.8	67
125	Influence of EGR compounds on the oxidation of an HCCI-diesel surrogate. Proceedings of the Combustion Institute, 2009, 32, 2851-2859.	2.4	31
126	A lean methane premixed laminar flame doped with components of diesel fuell. n-Butylbenzene. Combustion and Flame, 2009, 156, 954-974.	2.8	37

#	Article	IF	CITATIONS
127	Experimental study of the oxidation of large surrogates for diesel and biodiesel fuels. Combustion and Flame, 2009, 156, 2129-2144.	2.8	112
128	A comparative study of the formation of aromatics in rich methane flames doped by unsaturated compounds. Fuel, 2009, 88, 1388-1393.	3.4	22
129	Influence of the position of the double bond on the autoignition of linear alkenes at low temperature. Proceedings of the Combustion Institute, 2009, 32, 387-394.	2.4	66
130	Modeling of autoignition and NO sensitization for the oxidation of IC engine surrogate fuels. Combustion and Flame, 2009, 156, 505-521.	2.8	61
131	Rich methane premixed laminar flames doped by light unsaturated hydrocarbons. Combustion and Flame, 2008, 152, 245-261.	2.8	21
132	Experimental and modeling study of the autoignition of cyclopentene. International Journal of Chemical Kinetics, 2008, 40, 25-33.	1.0	8
133	Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates. Progress in Energy and Combustion Science, 2008, 34, 440-498.	15.8	547
134	A Tentative Modeling Study of the Effect of Wall Reactions on Oxidation Phenomena. Energy & Fuels, 2008, 22, 3736-3743.	2.5	22
135	An Experimental and Kinetic Modeling Study of the Oxidation of the Four Isomers of Butanol. Journal of Physical Chemistry A, 2008, 112, 10843-10855.	1.1	257
136	Thermal Decomposition of Norbornane (bicyclo[2.2.1]heptane) Dissolved in Benzene:Â Experimental Study and Mechanism Investigation. Energy & Fuels, 2007, 21, 1406-1414.	2.5	7
137	To Better Understand the Formation of Short-Chain Acids in Combustion Systems. Combustion Science and Technology, 2007, 180, 343-370.	1.2	33
138	Rich premixed laminar methane flames doped by light unsaturated hydrocarbons. Combustion and Flame, 2007, 151, 245-261.	2.8	30
139	The autoignition of cyclopentane and cyclohexane in a shock tube. Proceedings of the Combustion Institute, 2007, 31, 277-284.	2.4	108
140	Thermal decomposition of n-dodecane: Experiments and kinetic modeling. Journal of Analytical and Applied Pyrolysis, 2007, 78, 419-429.	2.6	138
141	Primary Mechanism of the Thermal Decomposition of Tricyclodecane. Journal of Physical Chemistry A, 2006, 110, 11298-11314.	1.1	82
142	Modeling of the Gas-Phase Oxidation of Cyclohexane. Energy & amp; Fuels, 2006, 20, 1450-1459.	2.5	80
143	Experimental and modeling study of the autoignition of 1-hexene/isooctane mixtures at low temperatures. Combustion and Flame, 2006, 145, 272-281.	2.8	26
144	Use of detailed kinetic mechanisms for the prediction of autoignitions. Journal of Loss Prevention in the Process Industries, 2006, 19, 227-232.	1.7	11

#	Article	IF	CITATIONS
145	Experimental study of the structure of a rich premixed 1,3-butadiene/CH4/O2/Ar flame. Combustion, Explosion and Shock Waves, 2006, 42, 702-707.	0.3	1
146	Experimental and modeling study of the oxidation of xylenes. International Journal of Chemical Kinetics, 2006, 38, 284-302.	1.0	88
147	Progress toward a unified detailed kinetic model for the autoignition of alkanes from C4 to C10 between 600 and 1200 K. Combustion and Flame, 2005, 142, 170-186.	2.8	272
148	Playing with Fire. Chemical Engineering Research and Design, 2005, 83, 317-323.	2.7	5
149	Experimental and modeling study of the oxidation of toluene. International Journal of Chemical Kinetics, 2005, 37, 25-49.	1.0	176
150	Experimental and modeling study of the oxidation of 1-pentene at high temperature. International Journal of Chemical Kinetics, 2005, 37, 451-463.	1.0	62
151	Modeling of the oxidation of large alkenes at low temperature. Proceedings of the Combustion Institute, 2005, 30, 1073-1081.	2.4	97
152	Experimental and modeling study of 1-hexene oxidation behind reflected shock waves. Proceedings of the Combustion Institute, 2005, 30, 1137-1145.	2.4	57
153	Experimental and modelling investigation of the thermal decomposition of n-dodecane. Journal of Analytical and Applied Pyrolysis, 2004, 71, 865-881.	2.6	118
154	Experimental and modeling study of the oxidation of cyclohexene. International Journal of Chemical Kinetics, 2003, 35, 273-285.	1.0	59
155	Experimental and modeling study of the oxidation of benzene. International Journal of Chemical Kinetics, 2003, 35, 503-524.	1.0	70
156	Modeling the Oxidation of Mixtures of Primary Reference Automobile Fuels. Energy & Fuels, 2002, 16, 1186-1195.	2.5	61
157	Development of kinetic models for the formation and degradation of unsaturated hydrocarbons at high temperature. Physical Chemistry Chemical Physics, 2002, 4, 2072-2078.	1.3	29
158	Experimental and modeling study of the oxidation of 1-butyne and 2-butyne. International Journal of Chemical Kinetics, 2002, 34, 172-183.	1.0	39
159	Oxidation of small alkenes at high temperature. International Journal of Chemical Kinetics, 2002, 34, 666-677.	1.0	70
160	The gas-phase oxidation ofn-hexadecane. International Journal of Chemical Kinetics, 2001, 33, 574-586.	1.0	50
161	Comprehensive mechanism for the gas-phase oxidation of propene. Combustion and Flame, 2001, 126, 1780-1802.	2.8	54
162	Automatic reduction of detailed mechanisms of combustion of alkanes by chemical lumping. International Journal of Chemical Kinetics, 2000, 32, 36-51.	1.0	41

#	Article	IF	CITATIONS
163	Computer tools for modelling the chemical phenomena related to combustion. Chemical Engineering Science, 2000, 55, 2883-2893.	1.9	64
164	Construction and simplification of a model for the oxidation of alkanes. Combustion and Flame, 2000, 122, 451-462.	2.8	77
165	Experimental and modeling study of the gas-phase oxidation of methyl and ethyl tertiary butyl ethers. Combustion and Flame, 2000, 121, 345-355.	2.8	59
166	Modeling of the gas-phase oxidation of n-decane from 550 to 1600 K. Proceedings of the Combustion Institute, 2000, 28, 1597-1605.	2.4	58
167	Computer based generation of reaction mechanisms for gas-phase oxidation. Computers & Chemistry, 2000, 24, 541-560.	1.2	130
168	Thermal decomposition of chloropicrin, diphosgene and phosgene between 100 and 530°C. Journal of Analytical and Applied Pyrolysis, 2000, 53, 95-105.	2.6	19
169	Thermal decomposition of bis (2-chloroethyl) sulphide and bis (2-chloroethyl) ether between 300 and 500°C. Journal of Analytical and Applied Pyrolysis, 2000, 55, 203-216.	2.6	10
170	Experimental and modeling of oxidation of acetylene, propyne, allene and 1,3-butadiene. International Journal of Chemical Kinetics, 1999, 31, 361-379.	1.0	104
171	Rate Coefficients for the Reactions of OH and OD with HCl and DCl between 200 and 400 K. Journal of Physical Chemistry A, 1999, 103, 3237-3244.	1.1	46
172	Computer-Aided Derivation of Gas-Phase Oxidation Mechanisms: Application to the Modeling of the Oxidation of n-Butane. Combustion and Flame, 1998, 114, 81-102.	2.8	170
173	Modeling of the oxidation ofn-octane andn-decane using an automatic generation of mechanisms. International Journal of Chemical Kinetics, 1998, 30, 949-959.	1.0	82
174	Experimental and modeling study of the oxidation of isobutene. International Journal of Chemical Kinetics, 1998, 30, 629-640.	1.0	24
175	Photolysis of ozone at 308 and 248 nm: Quantum yield of O(¹D) as a function of temperature. Geophysical Research Letters, 1997, 24, 1091-1094.	1.5	33
176	The Chemical Inhibiting Effect of Some Fluorocarbons and Hydrofluorocarbons Proposed as Substitutes for Halons. ACS Symposium Series, 1997, , 289-303.	0.5	1
177	Inhibiting effect of CF3I on the reaction between CH4 and O2 in a jet-stirred reactor. Combustion and Flame, 1997, 109, 285-292.	2.8	11
178	Experimental and modelling study of the effect of CF3H, C2F6 and CF3Br on the ignition delays of methane-oxygen-argon mixtures behind shock waves. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1997, 94, 460-476.	0.2	16
179	Kinetics of the self-reaction of CF2radical and its reaction with H2, O2, CH4and C2H4over the temperature range 295–873 K. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 3305-3313.	1.7	38
180	Computer-aided design of gas-phase oxidation mechanisms—Application to the modeling of n-heptane and iso-octane oxidation. Proceedings of the Combustion Institute, 1996, 26, 755-762.	0.3	60

#	Article	IF	CITATIONS
181	Chemical lumping of mechanisms generated by computer. Application to the modelling of normal butane oxidation. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1996, 93, 1472-1491.	0.2	16
182	Inhibiting effect of brominated compounds on oxidation reactions. Combustion and Flame, 1995, 103, 339-342.	2.8	10
183	Kinetics of the reactions of the HO2 radical with peroxyl radicals derived from hydrochlorofluorocarbons and hydrofluorocarbons. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 1313.	1.7	16
184	Experimental and modelling study of methane and ethane oxidation between 773 and 1573 K. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1995, 92, 1666-1692.	0.2	94
185	The inhibiting effect of CF3Br on the reaction CH4 + O2 at 1070 K. Combustion and Flame, 1994, 99, 644-652.	2.8	23
186	Modeling the Laminar Flame Speed of Natural Gas and Gasoline Surrogates. , 0, , .		13