Marie Jubault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1564186/publications.pdf

Version: 2024-02-01

840776 888059 24 306 11 17 citations h-index g-index papers 24 24 24 458 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Light absorption enhancement in ultra-thin Cu(In,Ga)Se 2 solar cells by substituting the back-contact with a transparent conducting oxide based reflector. Thin Solid Films, 2017, 633, 202-207.	1.8	33
2	Cu(In, Ga)Se2 microcells: High efficiency and low material consumption. Journal of Renewable and Sustainable Energy, 2013, 5, .	2.0	31
3	New insights into the Mo/Cu(In,Ga)Se2 interface in thin film solar cells: Formation and properties of the MoSe2 interfacial layer. Journal of Chemical Physics, 2016, 145, 154702.	3.0	28
4	Development of reflective back contacts for high-efficiency ultrathin Cu(In,Ga)Se2 solar cells. Thin Solid Films, 2019, 672, 1-6.	1.8	22
5	Interface engineering of ultrathin Cu(In,Ga)Se ₂ solar cells on reflective back contacts. Progress in Photovoltaics: Research and Applications, 2021, 29, 212-221.	8.1	21
6	IPVF's PV technology vision for 2030. Progress in Photovoltaics: Research and Applications, 2020, 28, 1207-1214.	8.1	20
7	GaSe Formation at the Cu(In,Ga)Se ₂ /Mo Interface–A Novel Approach for Flexible Solar Cells by Easy Mechanical Liftâ€Off. Advanced Materials Interfaces, 2014, 1, 1400044.	3.7	19
8	Differential in-depth characterization of co-evaporated Cu(In,Ga)Se2 thin films for solar cell applications. Thin Solid Films, 2014, 558, 47-53.	1.8	19
9	Reflective Back Contacts for Ultrathin Cu(In,Ga)Se2-Based Solar Cells. IEEE Journal of Photovoltaics, 2020, 10, 250-254.	2.5	15
10	Temperature effect on zinc oxysulfide-Zn(O,S) films synthesized by atomic layer deposition for Cu(In,Ga)Se2 solar cells. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	2.1	12
11	Revisiting Schottky barriers for CIGS solar cells: Electrical characterization of the Al/Cu(InGa)Se ₂ contact. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2425-2430.	1.8	11
12	Ultra-thin Cu(In,Ga)Se 2 solar cells prepared by an alternative hybrid co-sputtering/evaporation process. Thin Solid Films, 2017, 633, 66-70.	1.8	11
13	Improving V _{oc} With Indium and Alkali Fluorides in Cu(In,Ga)Se ₂ Solar Cells Deposited at Low Temperature on Polyimide. IEEE Journal of Photovoltaics, 2018, 8, 1343-1348.	2.5	10
14	Deposition of SnO2:F Thin Films on Polycarbonate Substrates by PECVD for Antifouling Properties. Plasma Processes and Polymers, 2007, 4, S330-S335.	3.0	9
15	In-situ optical emission spectroscopy for a better control of hybrid sputtering/evaporation process for the deposition of Cu(ln,Ga)Se 2 layers. Thin Solid Films, 2015, 582, 279-283.	1.8	9
16	Adaptation of the surface-near Ga content in co-evaporated Cu(In,Ga)Se 2 for CdS versus Zn(S,O)-based buffer layers. Thin Solid Films, 2015, 582, 295-299.	1.8	7
17	In Situ Monitoring of Cu(ln _{1â^'<i>x</i>} ,Ga <i>_x</i>)Se ₂ Composition and Target Poisoning by Real Time Optical Emission Spectroscopy During Deposition From a Hybrid Sputtering/Evaporation Process. Plasma Processes and Polymers, 2016, 13, 997-1007.	3.0	7
18	Study of Gallium Front Grading at Low Deposition Temperature on Polyimide Substrates and Impacts on the Solar Cell Properties. IEEE Journal of Photovoltaics, 2018, 8, 1852-1857.	2.5	7

#	Article	IF	CITATIONS
19	Thin-film microcells: a new generation of photovoltaic devices. SPIE Newsroom, 0, , .	0.1	6
20	Investigations of temperature and power effects on Cu(In,Ga)Se ₂ thinâ€film formation during a 3â€stage hybrid coâ€sputtering/evaporation process. Progress in Photovoltaics: Research and Applications, 2018, 26, 24-37.	8.1	4
21	A comparative study of the impact of Mo and stainless steel substrates on the properties of Cu(In,Ga)Se2 based solar cells. Thin Solid Films, 2019, 671, 6-11.	1.8	3
22	Multi-stage co-evaporation process for active Ga gradient control in CIGS solar cells. , $2014, \ldots$		1
23	In-Situ Cu(In,Ga)Se <inf>2</inf> composition control by Optical Emission Spectroscopy during hybrid co-sputtering/evaporation process., 2014,,.		1
24	Cross strategy of surface and volume characterizations of chalcogenides thin films: Practical case of CIGS absorbers. , 2016 , , .		0