
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1564027/publications.pdf Version: 2024-02-01

CHELCONNON

#	Article	IF	CITATIONS
1	Alginate in corneal tissue engineering. Biomedical Materials (Bristol), 2022, , .	1.7	8
2	Effect of isolation method on human corneal stromal cell behaviour. Experimental Eye Research, 2021, 203, 108400.	1.2	1
3	Milliscale Substrate Curvature Promotes Myoblast Selfâ€Organization and Differentiation. Advanced Biology, 2021, 5, e2000280.	1.4	13
4	A single cell atlas of human cornea that defines its development, limbal progenitor cells and their interactions with the immune cells. Ocular Surface, 2021, 21, 279-298.	2.2	102
5	Use of biomaterials in corneal endothelial repair. Therapeutic Advances in Ophthalmology, 2021, 13, 251584142110582.	0.8	5
6	Effects of Gelatin Methacrylate Hydrogel on Corneal Repair and Regeneration in Rats. Translational Vision Science and Technology, 2021, 10, 25.	1.1	8
7	Keratoconus at a Molecular Level: A Review. Anatomical Record, 2020, 303, 1680-1688.	0.8	22
8	Biomechanical Modulation Therapy—A Stem Cell Therapy Without Stem Cells for the Treatment of Severe Ocular Burns. Translational Vision Science and Technology, 2020, 9, 5.	1.1	9
9	Hypothermically Stored Adipose-Derived Mesenchymal Stromal Cell Alginate Bandages Facilitate Use of Paracrine Molecules for Corneal Wound Healing. International Journal of Molecular Sciences, 2020, 21, 5849.	1.8	6
10	Scale-Up Technologies for the Manufacture of Adherent Cells. Frontiers in Nutrition, 2020, 7, 575146.	1.6	55
11	Response of human oral mucosal epithelial cells to different storage temperatures: A structural and transcriptional study. PLoS ONE, 2020, 15, e0243914.	1.1	2
12	YAP, ΔNp63, and β-Catenin Signaling Pathways Are Involved in the Modulation of Corneal Epithelial Stem Cell Phenotype Induced by Substrate Stiffness. Cells, 2019, 8, 347.	1.8	38
13	Mesenchymal stromal cells for ocular surface repair. Expert Opinion on Biological Therapy, 2019, 19, 643-653.	1.4	17
14	Assessment of corneal substrate biomechanics and its effect on epithelial stem cell maintenance and differentiation. Nature Communications, 2019, 10, 1496.	5.8	93
15	Encapsulation of human limbus-derived stromal/mesenchymal stem cells for biological preservation and transportation in extreme Indian conditions for clinical use. Scientific Reports, 2019, 9, 16950.	1.6	9
16	Autogenous Biofabrication of Nativelike, Scaffold-Free Human Skin Equivalents Using a Smart, Enzyme-Degradable Tissue Templating Coating. ACS Applied Bio Materials, 2019, 2, 838-847.	2.3	1
17	4D Corneal Tissue Engineering: Achieving Timeâ€Dependent Tissue Self urvature through Localized Control of Cell Actuators. Advanced Functional Materials, 2019, 29, 1807334.	7.8	33
18	Tissuepatch is biocompatible and seals iatrogenic membrane defects in a rabbit model. Prenatal Diagnosis, 2018, 38, 99-105.	1.1	11

#	Article	IF	CITATIONS
19	Alginate encapsulated multipotent adult progenitor cells promote corneal stromal cell activation via release of soluble factors. PLoS ONE, 2018, 13, e0202118.	1.1	10
20	3D bioprinting of a corneal stroma equivalent. Experimental Eye Research, 2018, 173, 188-193.	1.2	268
21	Controlling the 3D architecture of Self-Lifting Auto-generated Tissue Equivalents (SLATEs) for optimized corneal graft composition and stability. Biomaterials, 2017, 121, 205-219.	5.7	40
22	Template Curvature Influences Cell Alignment to Create Improved Human Corneal Tissue Equivalents. Advanced Biology, 2017, 1, e1700135.	3.0	34
23	Gamma-irradiated human amniotic membrane decellularised with sodium dodecyl sulfate is a more efficient substrate for the ex vivo expansion of limbal stem cells. Acta Biomaterialia, 2017, 61, 124-133.	4.1	28
24	Developing a Continuous Bioprocessing Approach to Stromal Cell Manufacture. ACS Applied Materials & Interfaces, 2017, 9, 41131-41142.	4.0	14
25	Process parameters for the high-scale production of alginate-encapsulated stem cells for storage and distribution throughout the cell therapy supply chain. Process Biochemistry, 2017, 59, 289-296.	1.8	33
26	Collagen scaffolds for corneal regeneration. , 2016, , 151-177.		3
27	Cell Therapy in Practice. , 2016, , 211-236.		1
28	Assessing corneal biomechanics with Brillouin spectro-microscopy. Faraday Discussions, 2016, 187, 415-428.	1.6	44
29	Alginate-Encapsulation for the Improved Hypothermic Preservation of Human Adipose-Derived Stem Cells. Stem Cells Translational Medicine, 2016, 5, 339-349.	1.6	65
30	Keeping cells in their place: the future of stem cell encapsulation. Expert Opinion on Biological Therapy, 2016, 16, 1181-1183.	1.4	8
31	Supra-molecular assembly of a lumican-derived peptide amphiphile enhances its collagen-stimulating activity. Biomaterials Science, 2016, 4, 346-354.	2.6	16
32	A self-assembling fluorescent dipeptide conjugate for cell labelling. Colloids and Surfaces B: Biointerfaces, 2016, 137, 104-108.	2.5	15
33	Peptide Amphiphiles in Corneal Tissue Engineering. Journal of Functional Biomaterials, 2015, 6, 687-707.	1.8	26
34	Low-glucose enhances keratocyte-characteristic phenotype from corneal stromal cells in serum-free conditions. Scientific Reports, 2015, 5, 10839.	1.6	40
35	Self-assembly of a dual functional bioactive peptide amphiphile incorporating both matrix metalloprotease substrate and cell adhesion motifs. Soft Matter, 2015, 11, 3115-3124.	1.2	20
36	Application of retinoic acid improves form and function of tissue engineered corneal construct. Organogenesis, 2015, 11, 122-136.	0.4	17

#	Article	IF	CITATIONS
37	New Self-Assembling Multifunctional Templates for the Biofabrication and Controlled Self-Release of Cultured Tissue. Tissue Engineering - Part A, 2015, 21, 1772-1784.	1.6	39
38	Self-Assembly and Collagen-Stimulating Activity of a Peptide Amphiphile Incorporating a Peptide Sequence from Lumican. Langmuir, 2015, 31, 4490-4495.	1.6	33
39	Bio-fabrication and physiological self-release of tissue equivalents using smart peptide amphiphile templates. Journal of Materials Science: Materials in Medicine, 2015, 26, 242.	1.7	17
40	Approaches to Corneal Tissue Engineering: Top-down or Bottom-up?. Procedia Engineering, 2015, 110, 15-20.	1.2	16
41	Self-Assembled Arginine-Capped Peptide Bolaamphiphile Nanosheets for Cell Culture and Controlled Wettability Surfaces. Biomacromolecules, 2015, 16, 3180-3190.	2.6	49
42	Oxidized alginate hydrogels as niche environments for corneal epithelial cells. Journal of Biomedical Materials Research - Part A, 2014, 102, 3393-3400.	2.1	47
43	<i>In vivo</i> study of the biocompatibility of a novel compressed collagen hydrogel scaffold for artificial corneas. Journal of Biomedical Materials Research - Part A, 2014, 102, 1782-1787.	2.1	36
44	The bioactivity of composite Fmoc-RGDS-collagen gels. Biomaterials Science, 2014, 2, 1222-1229.	2.6	43
45	Alanine-rich amphiphilic peptide containing the RGD cell adhesion motif: a coating material for human fibroblast attachment and culture. Biomaterials Science, 2014, 2, 362-369.	2.6	40
46	Influence of elastase on alanine-rich peptide hydrogels. Biomaterials Science, 2014, 2, 867-874.	2.6	20
47	Differential nuclear expression of Yap in basal epithelial cells across the cornea and substrates of differing stiffness. Experimental Eye Research, 2014, 127, 37-41.	1.2	44
48	The Instructive Role of Biomaterials in Cell-Based Therapy and Tissue Engineering. RSC Soft Matter, 2014, , 73-94.	0.2	0
49	Collagen Stimulating Effect of Peptide Amphiphile C ₁₆ –KTTKS on Human Fibroblasts. Molecular Pharmaceutics, 2013, 10, 1063-1069.	2.3	58
50	Bioactive films produced from self-assembling peptide amphiphiles as versatile substrates for tuning cell adhesion and tissue architecture in serum-free conditions. Journal of Materials Chemistry B, 2013, 1, 6157.	2.9	40
51	Self-assembly and bioactivity of a polymer/peptide conjugate containing the RGD cell adhesion motif and PEG. European Polymer Journal, 2013, 49, 2961-2967.	2.6	22
52	New RGD-peptide amphiphile mixtures containing a negatively charged diluent. Faraday Discussions, 2013, 166, 381.	1.6	51
53	A Novel Alternative to Cryopreservation for the Short-Term Storage of Stem Cells for Use in Cell Therapy Using Alginate Encapsulation. Tissue Engineering - Part C: Methods, 2013, 19, 568-576.	1.1	55
54	Towards the use of hydrogels in the treatment of limbal stem cell deficiency. Drug Discovery Today, 2013, 18, 79-86.	3.2	37

#	Article	IF	CITATIONS
55	Cyclodextrin-Mediated Enhancement of Riboflavin Solubility and Corneal Permeability. Molecular Pharmaceutics, 2013, 10, 756-762.	2.3	120
56	The Formation of a Tissue-Engineered Cornea Using Plastically Compressed Collagen Scaffolds and Limbal Stem Cells. Methods in Molecular Biology, 2013, 1014, 143-155.	0.4	20
57	Limbal Epithelial Stem Cell Identification Using Immunoblotting Analysis. Methods in Molecular Biology, 2013, 1014, 79-99.	0.4	2
58	The Secretome of Alginate-Encapsulated Limbal Epithelial Stem Cells Modulates Corneal Epithelial Cell Proliferation. PLoS ONE, 2013, 8, e70860.	1.1	15
59	The Effects of Retinoic Acid on Human Corneal Stromal Keratocytes Cultured In Vitro Under Serum-Free Conditions. , 2013, 54, 7483.		42
60	Tissue Engineering a Fetal Membrane. Tissue Engineering - Part A, 2012, 18, 373-381.	1.6	18
61	Enhanced viability of corneal epithelial cells for efficient transport/storage using a structurally modified calcium alginate hydrogel. Regenerative Medicine, 2012, 7, 295-307.	0.8	58
62	Slow-Release RGD-Peptide Hydrogel Monoliths. Langmuir, 2012, 28, 12575-12580.	1.6	25
63	Influence of substrate on corneal epithelial cell viability within ocular surface models. Experimental Eye Research, 2012, 101, 97-103.	1.2	13
64	Self-Assembly of a Peptide Amphiphile Containing <scp>l</scp> -Carnosine and Its Mixtures with a Multilamellar Vesicle Forming Lipid. Langmuir, 2012, 28, 11599-11608.	1.6	61
65	The mechanical properties of amniotic membrane influence its effect as a biomaterial for ocular surface repair. Soft Matter, 2012, 8, 8379.	1.2	51
66	A flow system for the on-line quantitative measurement of the retention of dosage forms on biological surfaces using spectroscopy and image analysis. International Journal of Pharmaceutics, 2012, 428, 96-102.	2.6	18
67	Ex vivo expansion of limbal stem cells is affected by substrate properties. Stem Cell Research, 2012, 8, 403-409.	0.3	65
68	Hydrogelation of self-assembling RGD-based peptides. Soft Matter, 2011, 7, 1326-1333.	1.2	112
69	Photochemical crossâ€linking of plastically compressed collagen gel produces an optimal scaffold for corneal tissue engineering. Journal of Biomedical Materials Research - Part A, 2011, 99A, 1-8.	2.1	52
70	Plastic compression of a collagen gel forms a much improved scaffold for ocular surface tissue engineering over conventional collagen gels. Journal of Biomedical Materials Research - Part A, 2010, 95A, 447-453.	2.1	97
71	The variation in transparency of amniotic membrane used in ocular surface regeneration. British Journal of Ophthalmology, 2010, 94, 1057-1061.	2.1	68
72	<i>Ex Vivo</i> Construction of an Artificial Ocular Surface by Combination of Corneal Limbal Epithelial Cells and a Compressed Collagen Scaffold Containing Keratocytes. Tissue Engineering - Part A, 2010, 16, 2091-2100.	1.6	62

#	Article	IF	CITATIONS
73	Differentiation Status of Limbal Epithelial Cells Cultured on Intact and Denuded Amniotic Membrane Before and After Air-Lifting. Tissue Engineering - Part A, 2010, 16, 2721-2729.	1.6	26
74	Investigation of K14/K5 as a Stem Cell Marker in the Limbal Region of the Bovine Cornea. PLoS ONE, 2010, 5, e13192.	1.1	21
75	A Role for Notch Signaling in Human Corneal Epithelial Cell Differentiation and Proliferation. , 2007, 48, 3576.		55
76	The Biomechanics of Amnion Rupture: An X-Ray Diffraction Study. PLoS ONE, 2007, 2, e1147.	1.1	33
77	The Persistence of Transplanted Amniotic Membrane in Corneal Stroma. American Journal of Ophthalmology, 2006, 141, 190-192.	1.7	27
78	Expression and tissue distribution of p63 isoforms in human ocular surface epithelia. Experimental Eye Research, 2006, 82, 293-299.	1.2	80
79	Pathological keratinisation in the conjunctival epithelium of Sjögren's syndrome. Experimental Eye Research, 2006, 82, 371-378.	1.2	28
80	Gene expression and immunolocalisation of a calcium-activated chloride channel during the stratification of cultivated and developing corneal epithelium. Cell and Tissue Research, 2006, 323, 177-182.	1.5	25
81	The Putative Chloride Channel hCLCA2 Has a Single C-terminal Transmembrane Segment. Journal of Biological Chemistry, 2006, 281, 29448-29454.	1.6	35
82	The quantification of hCLCA2 and colocalisation with integrin β4 in stratified human epithelia. Acta Histochemica, 2005, 106, 421-425.	0.9	13
83	Calcium-activated Chloride Channel-2 in Human Epithelia. Journal of Histochemistry and Cytochemistry, 2004, 52, 415-418.	1.3	28
84	Amniotic Membrane as a Carrier for Cultivated Human Corneal Endothelial Cell Transplantation. , 2004, 45, 800.		295
85	Spatial and temporal alterations in the collagen fibrillar array during the onset of transparency in the avian cornea. Experimental Eye Research, 2004, 78, 909-915.	1.2	23
86	The Structure and Swelling of Corneal Scar Tissue in Penetrating Full-Thickness Wounds. Cornea, 2004, 23, 165-171.	0.9	18
87	Organization of corneal collagen fibrils during the healing of trephined wounds in rabbits. Wound Repair and Regeneration, 2003, 11, 71-78.	1.5	27
88	Transparency, swelling and scarring in the corneal stroma. Eye, 2003, 17, 927-936.	1.1	194
89	Proteoglycan Alterations and Collagen Reorganisation in the Secondary Avian Cornea during Development. Ophthalmic Research, 2003, 35, 177-184.	1.0	15
90	Up-regulated gene expression in the conjunctival epithelium of patients with Sjögren's syndrome. Experimental Eye Research, 2003, 77, 17-26.	1.2	69

#	Article	IF	CITATIONS
91	Proteoglycan alterations in the rabbit corneal stroma after a lamellar incision. Journal of Cataract and Refractive Surgery, 2003, 29, 821-824.	0.7	7
92	P2X ₇ Receptors Are Redistributed on Human Monocytes after Pore Formation in Response to Prolonged Agonist Exposure. Pharmacology, 2003, 67, 163-168.	0.9	4
93	Persistent Haze and Disorganization of Anterior Stromal Collagen Appear Unrelated Following Phototherapeutic Keratectomy. Journal of Refractive Surgery, 2003, 19, 323-332.	1.1	31
94	Persistent haze and disorganization of anterior stromal collagen appear unrelated following phototherapeutic keratectomy. Journal of Refractive Surgery, 2003, 19, 323-32.	1.1	13