
Patrick Navard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1564025/publications.pdf Version: 2024-02-01

ΡΑΤΡΙCK ΝΑΝΑΡΟ

#	Article	IF	CITATIONS
1	One-step preparation procedure, mechanical properties and environmental performances of miscanthus-based concrete blocks. Materials Today Communications, 2022, 31, 103575.	1.9	0
2	Polysaccharides and phenolics of miscanthus belowground cell walls and their influence on polyethylene composites. Carbohydrate Polymers, 2021, 251, 117086.	10.2	1
3	Transcrystallinity in maize tissues/polypropylene composites: First focus of the heterogeneous nucleation and growth stages versus tissue type. Polymer Crystallization, 2021, 4, .	0.8	0
4	Variability of stem solidness among miscanthus genotypes and its role on mechanical properties of polypropylene composites. GCB Bioenergy, 2021, 13, 1576-1585.	5.6	3
5	Influence of chemical treatments of miscanthus stem fragments on polysaccharide release in the presence of cement and on the mechanical properties of bio-based concrete materials. Cement and Concrete Composites, 2020, 105, 103429.	10.7	31
6	Correlations between genotype biochemical characteristics and mechanical properties of maize stem - polyethylene composites. Industrial Crops and Products, 2020, 143, 111925.	5.2	12
7	Thermal and dynamic mechanical characterization of miscanthus stem fragments: Effects of genotypes, positions along the stem and their relation with biochemical and structural characteristics. Industrial Crops and Products, 2020, 156, 112863.	5.2	5
8	Erosion as a possible mechanism for the decrease of size of plastic pieces floating in oceans. Marine Pollution Bulletin, 2018, 127, 387-395.	5.0	52
9	Study of the partial wetting morphology in polylactide/poly[(butylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf International, 2018, 67, 1378-1385.	50 427 Td 3.1	l (adipate)â€ 10
10	Influence of the radial stem composition on the thermal behaviour of miscanthus and sorghum genotypes. Carbohydrate Polymers, 2017, 167, 12-19.	10.2	8
11	Processing and properties of sorghum stem fragment-polyethylene composites. Industrial Crops and Products, 2017, 107, 386-398.	5.2	13
12	Polyethylene composites made from below-ground miscanthus biomass. Industrial Crops and Products, 2017, 109, 523-528.	5.2	5
13	Crystallization of polypropylene in the presence of biomass-based fillers of different compositions. Polymer, 2017, 127, 220-231.	3.8	30
14	Influence of the scale and type of processing tool on plasticization of cellulose acetate. Polymer Engineering and Science, 2017, 57, 563-569.	3.1	7
15	Miscanthus stem fragment – Reinforced polypropylene composites: Development of an optimized preparation procedure at small scale and its validation for differentiating genotypes. Polymer Testing, 2016, 55, 166-172.	4.8	17
16	Influence of alkali and Si-based treatments on the physical and chemical characteristics of miscanthus stem fragments. Industrial Crops and Products, 2016, 91, 6-14.	5.2	14
17	Treatments of plant biomass for cementitious building materials – A review. Construction and Building Materials, 2016, 121, 161-176.	7.2	96
18	Cellulose in NaOH–water based solvents: a review. Cellulose, 2016, 23, 5-55.	4.9	257

PATRICK NAVARD

#	Article	IF	CITATIONS
19	Influence of substitution on the rheological properties and gelation of hydroxyethyl cellulose solution in NaOH–water solvent. Carbohydrate Polymers, 2015, 124, 85-89.	10.2	20
20	Structure and properties of novel cellulose-based fibers spun from aqueous NaOH solvent under various drawing conditions. Cellulose, 2015, 22, 1333-1345.	4.9	7
21	3rd EPNOE international polysaccharide conference (EPNOE 2013). Carbohydrate Polymers, 2015, 116, 1.	10.2	0
22	Molecular Modeling and Imaging of Initial Stages of Cellulose Fibril Assembly: Evidence for a Disordered Intermediate Stage. PLoS ONE, 2014, 9, e93981.	2.5	32
23	Destructuration of cotton under elevated pressure. Cellulose, 2013, 20, 1001-1011.	4.9	3
24	EPNOE 2013 conference. Cellulose, 2013, 20, 981-981.	4.9	0
25	Influence of the elasticity of cellulose solutions on the dispersion of carbon black agglomerates. Cellulose, 2013, 20, 1679-1690.	4.9	2
26	Preparation, processing and properties of lignosulfonate–flax composite boards. Carbohydrate Polymers, 2013, 93, 300-306.	10.2	17
27	Effects of nitren extraction on a dissolving pulp and influence on cellulose dissolution in NaOH–water. Cellulose, 2013, 20, 2013-2026.	4.9	8
28	Influence of cotton variety on compression and destructuration abilities under elevated pressure. Cellulose, 2013, 20, 1013-1022.	4.9	0
29	The European Polysaccharide Network of Excellence (EPNOE). Carbohydrate Polymers, 2013, 93, 2.	10.2	10
30	Preparation and Properties of Cellulose Solutions. , 2012, , 91-152.		6
31	Swelling and dissolution mechanisms of regenerated Lyocell cellulose fibers. Cellulose, 2011, 18, 1-15.	4.9	43
32	How does the never-dried state influence the swelling and dissolution of cellulose fibres in aqueous solvent?. Cellulose, 2011, 18, 247-256.	4.9	27
33	Influence of ZnO on the properties of dilute and semi-dilute cellulose-NaOH-water solutions. Cellulose, 2011, 18, 911-920.	4.9	59
34	Dissolution mechanisms of wood cellulose fibres in NaOH–water. Cellulose, 2010, 17, 31-45.	4.9	98
35	Rotation and contraction of native and regenerated cellulose fibers upon swelling and dissolution: the role of morphological and stress unbalances. Cellulose, 2010, 17, 507-519.	4.9	35
36	Restricted dissolution and derivatization capacities of cellulose fibres under uniaxial elongational stress. Polymer, 2010, 51, 447-453.	3.8	15

PATRICK NAVARD

#	Article	IF	CITATIONS
37	Morphology of cellulose objects regenerated from cellulose–N-methylmorpholine N-oxide–water solutions. Cellulose, 2009, 16, 179-188.	4.9	64
38	Swelling and dissolution of cellulose, Part III: plant fibres in aqueous systems. Cellulose, 2008, 15, 67-74.	4.9	61
39	Swelling and dissolution of cellulose, Part V: cellulose derivatives fibres in aqueous systems and ionic liquids. Cellulose, 2008, 15, 75-80.	4.9	35
40	The dissolution of microcrystalline cellulose in sodium hydroxide-urea aqueous solutions. Cellulose, 2008, 15, 361-370.	4.9	104
41	Swelling and dissolution of cellulose. Part IV: Free floating cotton and wood fibres in ionic liquids. Carbohydrate Polymers, 2008, 72, 590-596.	10.2	108
42	Gradient in Dissolution Capacity of Successively Deposited Cell Wall Layers in Cotton Fibres. Macromolecular Symposia, 2008, 262, 65-71.	0.7	25
43	Structure of Aqueous Solutions of Microcrystalline Cellulose/Sodium Hydroxide below 0 °C and the Limit of Cellulose Dissolution. Biomacromolecules, 2007, 8, 2282-2287.	5.4	116
44	Swelling and Dissolution of Cellulose Part 1: Free Floating Cotton and Wood Fibres in N-Methylmorpholine-N-oxide–Water Mixtures. Macromolecular Symposia, 2006, 244, 1-18.	0.7	128
45	Swelling and Dissolution of Cellulose Part II: Free Floating Cotton and Wood Fibres in NaOH–Water–Additives Systems. Macromolecular Symposia, 2006, 244, 19-30.	0.7	89
46	Kinetics of Precipitation of Cellulose from Celluloseâ^'NMMOâ^'Water Solutions. Biomacromolecules, 2005, 6, 1948-1953.	5.4	58
47	Experimental and numerical study of the rotation and the erosion of fillers suspended in viscoelastic fluids under simple shear flow. Rheologica Acta, 2003, 42, 421-431.	2.4	16
48	Rheological Properties and Gelation of Aqueous Celluloseâ^'NaOH Solutions. Biomacromolecules, 2003, 4, 259-264.	5.4	124
49	Crystallisation of cellulose/N-methylmorpholine-N-oxide hydrate solutions. Polymer, 2002, 43, 6139-6145.	3.8	32
50	Structure of Celluloseâ^'Soda Solutions at Low Temperatures. Biomacromolecules, 2001, 2, 687-693.	5.4	60
51	In situ study of the dynamics of erosion of carbon black agglomerates. Journal of Applied Polymer Science, 2001, 80, 1627-1629.	2.6	16
52	Collision-induced dispersion of agglomerate suspensions in a shear flow. Journal of Applied Polymer Science, 2000, 78, 1130-1133.	2.6	30