List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/15638/publications.pdf Version: 2024-02-01

DHILLONES

#	Article	IF	CITATIONS
1	Updated highâ€resolution grids of monthly climatic observations – the <scp>CRU TS3</scp> .10 Dataset. International Journal of Climatology, 2014, 34, 623-642.	3.5	5,252
2	An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology, 2005, 25, 693-712.	3.5	3,550
3	The Twentieth Century Reanalysis Project. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 1-28.	2.7	2,785
4	On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology. Journal of Climate and Applied Meteorology, 1984, 23, 201-213.	1.0	2,714
5	Global warming and changes in drought. Nature Climate Change, 2014, 4, 17-22.	18.8	2,231
6	Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 2020, 7, 109.	5.3	2,064
7	A European daily highâ€resolution gridded data set of surface temperature and precipitation for 1950–2006. Journal of Geophysical Research, 2008, 113, .	3.3	1,889
8	Representing Twentieth-Century Space–Time Climate Variability. Part II: Development of 1901–96 Monthly Grids of Terrestrial Surface Climate. Journal of Climate, 2000, 13, 2217-2238.	3.2	1,808
9	Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. Journal of Geophysical Research, 2006, 111, .	3.3	1,623
10	Representing Twentieth-Century Space–Time Climate Variability. Part I: Development of a 1961–90 Mean Monthly Terrestrial Climatology. Journal of Climate, 1999, 12, 829-856.	3.2	1,573
11	Extension to the North Atlantic oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. International Journal of Climatology, 1997, 17, 1433-1450.	3.5	1,455
12	Maximum and Minimum Temperature Trends for the Globe. Science, 1997, 277, 364-367.	12.6	1,375
13	Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change, 2011, 2, 851-870.	8.1	1,325
14	Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. Journal of Geophysical Research, 2012, 117, .	3.3	1,287
15	Surface air temperature and its changes over the past 150 years. Reviews of Geophysics, 1999, 37, 173-199.	23.0	1,244
16	Hemispheric and Large-Scale Surface Air Temperature Variations: An Extensive Revision and an Update to 2001. Journal of Climate, 2003, 16, 206-223.	3.2	1,018
17	Antarctic climate change during the last 50 years. International Journal of Climatology, 2005, 25, 279-294.	3.5	948
18	Climate over past millennia. Reviews of Geophysics, 2004, 42, .	23.0	878

#	Article	IF	CITATIONS
19	An Ensemble Version of the Eâ€OBS Temperature and Precipitation Data Sets. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9391-9409.	3.3	875
20	A New Perspective on Recent Global Warming: Asymmetric Trends of Daily Maximum and Minimum Temperature. Bulletin of the American Meteorological Society, 1993, 74, 1007-1023.	3.3	870
21	HISTALP—historical instrumental climatological surface time series of the Greater Alpine Region. International Journal of Climatology, 2007, 27, 17-46.	3.5	828
22	An Extension of the Tahiti–Darwin Southern Oscillation Index. Monthly Weather Review, 1987, 115, 2161-2165.	1.4	742
23	High-resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with General Circulation Model control-run temperatures. Holocene, 1998, 8, 455-471.	1.7	728
24	Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. Nature, 1998, 393, 450-455.	27.8	728
25	Homogeneity adjustments ofin situ atmospheric climate data: a review. International Journal of Climatology, 1998, 18, 1493-1517.	3.5	720
26	Statistical downscaling of general circulation model output: A comparison of methods. Water Resources Research, 1998, 34, 2995-3008.	4.2	668
27	Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature, 1998, 391, 678-682.	27.8	658
28	Global surface temperatures over the past two millennia. Geophysical Research Letters, 2003, 30, .	4.0	655
29	Hemispheric and largeâ€scale landâ€surface air temperature variations: An extensive revision and an update to 2010. Journal of Geophysical Research, 2012, 117, .	3.3	639
30	Fennoscandian summers from ad 500: temperature changes on short and long timescales. Climate Dynamics, 1992, 7, 111-119.	3.8	617
31	Northern Hemisphere Surface Air Temperature Variations: 1851–1984. Journal of Climate and Applied Meteorology, 1986, 25, 161-179.	1.0	605
32	CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today's Earth System Models. Endeavour, 2016, 40, 178-187.	0.4	598
33	High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene, 2009, 19, 3-49.	1.7	588
34	Hemispheric Surface Air Temperature Variations: A Reanalysis and an Update to 1993. Journal of Climate, 1994, 7, 1794-1802.	3.2	587
35	Low-frequency temperature variations from a northern tree ring density network. Journal of Geophysical Research, 2001, 106, 2929-2941.	3.3	532
36	The Evolution of Climate Over the Last Millennium. Science, 2001, 292, 662-667.	12.6	529

#	Article	IF	CITATIONS
37	A 1,400-year tree-ring record of summer temperatures in Fennoscandia. Nature, 1990, 346, 434-439.	27.8	507
38	Global temperature variations between 1861 and 1984. Nature, 1986, 322, 430-434.	27.8	491
39	Spatial regression methods in dendroclimatology: A review and comparison of two techniques. International Journal of Climatology, 1994, 14, 379-402.	3.5	491
40	Precipitation measurements and trends in the twentieth century. International Journal of Climatology, 2001, 21, 1889-1922.	3.5	456
41	Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 2876-2908.	2.7	441
42	A scPDSIâ€based global data set of dry and wet spells for 1901–2009. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4025-4048.	3.3	428
43	Lowâ€frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. Journal of Geophysical Research, 2010, 115, .	3.3	412
44	A search for human influences on the thermal structure of the atmosphere. Nature, 1996, 382, 39-46.	27.8	397
45	Climatic and anthropogenic factors affecting river discharge to the global ocean, 1951–2000. Global and Planetary Change, 2008, 62, 187-194.	3.5	388
46	A comparison of Lamb circulation types with an objective classification scheme. International Journal of Climatology, 1993, 13, 655-663.	3.5	387
47	Regional climate impacts of the Southern Annular Mode. Geophysical Research Letters, 2006, 33, .	4.0	379
48	A daily weather generator for use in climate change studies. Environmental Modelling and Software, 2007, 22, 1705-1719.	4.5	376
49	Changes in daily temperature and precipitation extremes in central and south Asia. Journal of Geophysical Research, 2006, 111, .	3.3	374
50	CALCULATING REGIONAL CLIMATIC TIME SERIES FOR TEMPERATURE AND PRECIPITATION: METHODS AND ILLUSTRATIONS. International Journal of Climatology, 1996, 16, 361-377.	3.5	364
51	Interdecadal changes of surface temperature since the late nineteenth century. Journal of Geophysical Research, 1994, 99, 14373.	3.3	361
52	Observed trends in the daily intensity of United Kingdom precipitation. International Journal of Climatology, 2000, 20, 347-364.	3.5	360
53	Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901–2000. Journal of Geophysical Research, 2006, 111, .	3.3	347
54	The recent Sahel drought is real. International Journal of Climatology, 2004, 24, 1323-1331.	3.5	343

#	Article	IF	CITATIONS
55	A 7400-year tree-ring chronology in northern Swedish Lapland: natural climatic variability expressed on annual to millennial timescales. Holocene, 2002, 12, 657-665.	1.7	342
56	Extending North Atlantic Oscillation reconstructions back to 1500. Atmospheric Science Letters, 2001, 2, 114-124.	1.9	332
57	Precipitation Fluctuations over Northern Hemisphere Land Areas Since the Mid-19th Century. Science, 1987, 237, 171-175.	12.6	312
58	Assessment of urbanization effects in time series of surface air temperature over land. Nature, 1990, 347, 169-172.	27.8	312
59	Attribution of observed surface humidity changes to human influence. Nature, 2007, 449, 710-712.	27.8	312
60	Trends in indices for extremes in daily temperature and precipitation in central and western Europe, 1901-99. International Journal of Climatology, 2005, 25, 1149-1171.	3.5	311
61	Tree-ring width and density data around the Northern Hemisphere: Part 1, local and regional climate signals. Holocene, 2002, 12, 737-757.	1.7	310
62	An overview of results from the Coupled Model Intercomparison Project. Global and Planetary Change, 2003, 37, 103-133.	3.5	305
63	Detecting Greenhouse-Gas-Induced Climate Change with an Optimal Fingerprint Method. Journal of Climate, 1996, 9, 2281-2306.	3.2	304
64	Global temperature change and its uncertainties since 1861. Geophysical Research Letters, 2001, 28, 2621-2624.	4.0	300
65	An Updated Assessment of Nearâ€5urface Temperature Change From 1850: The HadCRUT5 Data Set. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2019JD032361.	3.3	299
66	Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature. Journal of Geophysical Research, 2004, 109, .	3.3	291
67	Evaluation of the North Atlantic Oscillation as simulated by a coupled climate model. Climate Dynamics, 1999, 15, 685-702.	3.8	286
68	Comparison of six methods for the interpolation of daily, European climate data. Journal of Geophysical Research, 2008, 113, .	3.3	286
69	Estimating Sampling Errors in Large-Scale Temperature Averages. Journal of Climate, 1997, 10, 2548-2568.	3.2	285
70	Recent temperature trends in the Antarctic. Nature, 2002, 418, 291-292.	27.8	276
71	Links between circulation and changes in the characteristics of Iberian rainfall. International Journal of Climatology, 2002, 22, 1593-1615.	3.5	272
72	Unusual twentieth-century summer warmth in a 1,000-year temperature record from Siberia. Nature, 1995, 376, 156-159.	27.8	270

PHIL JONES

#	Article	IF	CITATIONS
73	Dendroclimatic signals in long tree-ring chronologies from the Himalayas of Nepal. International Journal of Climatology, 2003, 23, 707-732.	3.5	270
74	Global Surface Air Temperature Variations During the Twentieth Century: Part 1, Spatial, Temporal and Seasonal Details. Holocene, 1992, 2, 165-179.	1.7	269
75	Southern Hemisphere Surface Air Temperature Variations: 1851–1984. Journal of Climate and Applied Meteorology, 1986, 25, 1213-1230.	1.0	268
76	A large discontinuity in the mid-twentieth century in observed global-mean surface temperature. Nature, 2008, 453, 646-649.	27.8	265
77	Recent climate change in the Arabian Peninsula: annual rainfall and temperature analysis of Saudi Arabia for 1978–2009. International Journal of Climatology, 2012, 32, 953-966.	3.5	259
78	Testing Eâ€OBS European highâ€resolution gridded data set of daily precipitation and surface temperature. Journal of Geophysical Research, 2009, 114, .	3.3	258
79	Adjusting for sampling density in grid box land and ocean surface temperature time series. Journal of Geophysical Research, 2001, 106, 3371-3380.	3.3	256
80	Obtaining subâ€gridâ€scale information from coarseâ€resolution general circulation model output. Journal of Geophysical Research, 1990, 95, 1943-1953.	3.3	254
81	Hemispheric Surface Air Temperature Variations: Recent Trends and an Update to 1987. Journal of Climate, 1988, 1, 654-660.	3.2	242
82	Trees tell of past climates: but are they speaking less clearly today?. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 65-73.	4.0	240
83	Spatial patterns of precipitation in England and Wales and a revised, homogeneous England and Wales precipitation series. Journal of Climatology, 1984, 4, 1-25.	0.7	238
84	Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Global and Planetary Change, 2013, 100, 295-307.	3.5	238
85	Estimating Changes in Global Temperature since the Preindustrial Period. Bulletin of the American Meteorological Society, 2017, 98, 1841-1856.	3.3	238
86	Consistency of modelled and observed temperature trends in the tropical troposphere. International Journal of Climatology, 2008, 28, 1703-1722.	3.5	236
87	Summer Moisture Variability across Europe. Journal of Climate, 2006, 19, 2818-2834.	3.2	234
88	Assessment of climate extremes in the Eastern Mediterranean. Meteorology and Atmospheric Physics, 2005, 89, 69-85.	2.0	233
89	Recent climate change in the Arabian Peninsula: Seasonal rainfall and temperature climatology of Saudi Arabia for 1979–2009. Atmospheric Research, 2012, 111, 29-45.	4.1	231
90	Attribution of polar warming to humanÂinfluence. Nature Geoscience, 2008, 1, 750-754.	12.9	222

#	Article	IF	CITATIONS
91	Recent Changes in Surface Humidity: Development of the HadCRUH Dataset. Journal of Climate, 2008, 21, 5364-5383.	3.2	213
92	Variations in Surface Air Temperatures: Part 1. Northern Hemisphere, 1881–1980. Monthly Weather Review, 1982, 110, 59-70.	1.4	210
93	The sensitivity of the PDSI to the Thornthwaite and Penman-Monteith parameterizations for potential evapotranspiration. Journal of Geophysical Research, 2011, 116, .	3.3	203
94	No increase in global temperature variability despite changing regional patterns. Nature, 2013, 500, 327-330.	27.8	201
95	Trends of Extreme Temperatures in Europe and China Based on Daily Observations. Climatic Change, 2002, 53, 355-392.	3.6	200
96	Wet and dry summers in Europe since 1750: evidence of increasing drought. International Journal of Climatology, 2009, 29, 1894-1905.	3.5	200
97	Detecting and Attributing External Influences on the Climate System: A Review of Recent Advances. Journal of Climate, 2005, 18, 1291-1314.	3.2	198
98	Proxy-Based Northern Hemisphere Surface Temperature Reconstructions: Sensitivity to Method, Predictor Network, Target Season, and Target Domain. Journal of Climate, 2005, 18, 2308-2329.	3.2	198
99	The Use of Indices to Identify Changes in Climatic Extremes. Climatic Change, 1999, 42, 131-149.	3.6	197
100	A Further Extension of the Tahiti-Darwin SOI, Early ENSO Events and Darwin Pressure. Journal of Climate, 1991, 4, 743-749.	3.2	195
101	Urbanization effects in largeâ€scale temperature records, with an emphasis on China. Journal of Geophysical Research, 2008, 113, .	3.3	194
102	The SCAR READER Project: Toward a High-Quality Database of Mean Antarctic Meteorological Observations. Journal of Climate, 2004, 17, 2890-2898.	3.2	192
103	Long-Term Variability of Daily North Atlantic–European Pressure Patterns since 1850 Classified by Simulated Annealing Clustering. Journal of Climate, 2007, 20, 4065-4095.	3.2	189
104	Temporal and spatial temperature variability and change over Spain during 1850–2005. Journal of Geophysical Research, 2007, 112, .	3.3	189
105	Tree-Ring Density Reconstructions of Summer Temperature Patterns across Western North America since 1600. Journal of Climate, 1992, 5, 735-754.	3.2	186
106	Towards the detection and attribution of an anthropogenic effect on climate. Climate Dynamics, 1995, 12, 77-100.	3.8	175
107	A new instrumental precipitation dataset for the greater alpine region for the period 1800-2002. International Journal of Climatology, 2005, 25, 139-166.	3.5	175
108	Revisiting radiosonde upper air temperatures from 1958 to 2002. Journal of Geophysical Research, 2005, 110, .	3.3	175

#	Article	IF	CITATIONS
109	The early instrumental warm-bias: a solution for long central European temperature series 1760–2007. Climatic Change, 2010, 101, 41-67.	3.6	174
110	Updated Precipitation Series for the U.K. and Discussion of Recent Extremes. Atmospheric Science Letters, 2000, 1, 142-150.	1.9	169
111	Atmospheric circulation and surface temperature in Europe from the 18th century to 1995. International Journal of Climatology, 2001, 21, 63-75.	3.5	167
112	Daily Mean Sea Level Pressure Reconstructions for the European–North Atlantic Region for the Period 1850–2003. Journal of Climate, 2006, 19, 2717-2742.	3.2	165
113	Tree-ring variables as proxy-climate indicators: Problems with low-frequency signals. , 1996, , 9-41.		164
114	Reconstructing Summer Temperatures in Northern Fennoscandinavia Back to A.D. 1700 Using Tree-Ring Data from Scots Pine. Arctic and Alpine Research, 1988, 20, 385.	1.3	162
115	Dark Ages Cold Period: A literature review and directions for future research. Holocene, 2017, 27, 1600-1606.	1.7	162
116	Influences of precipitation changes and direct CO2 effects on streamflow. Nature, 1985, 314, 149-152.	27.8	161
117	New estimates of future changes in extreme rainfall across the UK using regional climate model integrations. 1. Assessment of control climate. Journal of Hydrology, 2005, 300, 212-233.	5.4	160
118	State of the Climate in 2017. Bulletin of the American Meteorological Society, 2018, 99, Si-S310.	3.3	160
119	Summer moisture variability across Europe, 1892–1991: An analysis based on the palmer drought severity index. International Journal of Climatology, 1994, 14, 475-506.	3.5	153
120	THE IMPACT OF MOUNT PINATUBO ON WORLD-WIDE TEMPERATURES. International Journal of Climatology, 1996, 16, 487-497.	3.5	152
121	Atmospheric circulation patterns related to heavy snowfall days in Andorra, Pyrenees. International Journal of Climatology, 2005, 25, 319-329.	3.5	150
122	Identifying Signatures of Natural Climate Variability in Time Series of Global-Mean Surface Temperature: Methodology and Insights. Journal of Climate, 2009, 22, 6120-6141.	3.2	150
123	The CRUTEM4 land-surface air temperature data set: construction, previous versions and dissemination via Google Earth. Earth System Science Data, 2014, 6, 61-68.	9.9	148
124	Tree-ring based reconstruction of summer temperatures at the Columbia Icefield, Alberta, Canada, AD 1073-1983. Holocene, 1997, 7, 375-389.	1.7	147
125	New estimates of future changes in extreme rainfall across the UK using regional climate model integrations. 2. Future estimates and use in impact studies. Journal of Hydrology, 2005, 300, 234-251.	5.4	147
126	Detection and Attribution of Recent Climate Change: A Status Report. Bulletin of the American Meteorological Society, 1999, 80, 2631-2659.	3.3	145

#	Article	IF	CITATIONS
127	Forced and unforced ocean temperature changes in Atlantic and Pacific tropical cyclogenesis regions. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13905-13910.	7.1	145
128	Climatic signals in multiple highly resolved stable isotope records from Greenland. Quaternary Science Reviews, 2010, 29, 522-538.	3.0	145
129	State of the Climate in 2015. Bulletin of the American Meteorological Society, 2016, 97, Si-S275.	3.3	142
130	The early twentieth century Arctic high ? fact or fiction?. Climate Dynamics, 1987, 1, 63-75.	3.8	140
131	Construction of a 1961–1990 European climatology for climate change modelling and impact applications. International Journal of Climatology, 1995, 15, 1333-1363.	3.5	140
132	Tree-ring width and density data around the Northern Hemisphere: Part 2, spatio-temporal variability and associated climate patterns. Holocene, 2002, 12, 759-789.	1.7	138
133	Recent seasonal asymmetric changes in the NAO (a marked summer decline and increased winter) Tj ETQq1 1 0. Climatology, 2015, 35, 2540-2554.	784314 rg 3.5	BT /Overloc 138
134	The development of a new dataset of Spanish Daily Adjusted Temperature Series (SDATS) (1850–2003). International Journal of Climatology, 2006, 26, 1777-1802.	3.5	136
135	Signal strength and climate relationships in13C/12C ratios of tree ring cellulose from oak in east England. Journal of Geophysical Research, 1997, 102, 19507-19516.	3.3	135
136	Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries. Climate Dynamics, 2011, 37, 35-51.	3.8	135
137	State of the Climate in 2010. Bulletin of the American Meteorological Society, 2011, 92, S1-S236.	3.3	135
138	PRECIPITATION IN THE BRITISH ISLES: AN ANALYSIS OF AREA-AVERAGE DATA UPDATED TO 1995. International Journal of Climatology, 1997, 17, 427-438.	3.5	134
139	Variations in Surface Air Temperatures: Part 2. Arctic Regions, 1881–1980. Monthly Weather Review, 1982, 110, 71-83.	1.4	133
140	State of the Climate in 2016. Bulletin of the American Meteorological Society, 2017, 98, Si-S280.	3.3	132
141	Pre-1866 Extensions of the Southern Oscillation Index Using Early Indonesian and Tahitian Meteorological Readings. Journal of Climate, 1998, 11, 2325-2339.	3.2	131
142	Scenario for a warm, high-CO2 world. Nature, 1980, 283, 17-21.	27.8	130
143	New ice core evidence for a volcanic cause of the A.D. 536 dust veil. Geophysical Research Letters, 2008, 35, .	4.0	127
144	Summer Temperature Patterns over Europe: A Reconstruction from 1750 A.D. Based on Maximum Latewood Density Indices of Conifers. Quaternary Research, 1988, 30, 36-52.	1.7	126

#	Article	IF	CITATIONS
145	Detecting CO2-induced climatic change. Nature, 1981, 292, 205-208.	27.8	124
146	Global surface-temperature responses to major volcanic eruptions. Nature, 1987, 330, 365-367.	27.8	122
147	Six hundred years of South American tree rings reveal an increase in severe hydroclimatic events since mid-20th century. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16816-16823.	7.1	119
148	Monthly mean pressure reconstructions for Europe for the 1780–1995 period. International Journal of Climatology, 1999, 19, 347-364.	3.5	118
149	Trends of temperature extremes in Saudi Arabia. International Journal of Climatology, 2014, 34, 808-826.	3.5	118
150	Precipitation and air flow indices over the British Isles. Climate Research, 1996, 7, 169-183.	1.1	117
151	Frequency and within-type variations of large-scale circulation types and their effects on low-frequency climate variability in central europe since 1780. International Journal of Climatology, 2007, 27, 473-491.	3.5	115
152	HadISDH land surface multi-variable humidity and temperature record for climate monitoring. Climate of the Past, 2014, 10, 1983-2006.	3.4	113
153	Application of Markov models to area-average daily precipitation series and interannual variability in seasonal totals. Climate Dynamics, 1993, 8, 299-310.	3.8	112
154	China experiencing the recent warming hiatus. Geophysical Research Letters, 2015, 42, 889-898.	4.0	111
155	Climate trends in the South-west Pacific. International Journal of Climatology, 1995, 15, 285-302.	3.5	110
156	An abrupt drop in Northern Hemisphere sea surface temperature around 1970. Nature, 2010, 467, 444-447.	27.8	110
157	First cross-matched floating chronology from the marine fossil record: data from growth lines of the long-lived bivalve mollusc Arctica islandica. Holocene, 2006, 16, 967-974.	1.7	108
158	Lamb weather types derived from reanalysis products. International Journal of Climatology, 2013, 33, 1129-1139.	3.5	107
159	Tambora 1815 as a test case for high impact volcanic eruptions: Earth system effects. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7, 569-589.	8.1	105
160	Yearly maps of summer temperatures in Western Europe from A.D. 1750 to 1975 and Western North America from 1600 to 1982:. Plant Ecology, 1991, 92, 5-71.	1.2	105
161	Assessment of the uncertainties in temperature change in China during the last century. Science Bulletin, 2010, 55, 1974-1982.	1.7	103
162	Cross-dating methods in dendrochronology. Journal of Archaeological Science, 1987, 14, 51-64.	2.4	102

#	Article	IF	CITATIONS
163	The International Surface Pressure Databank version 2. Geoscience Data Journal, 2015, 2, 31-46.	4.4	102
164	Future Climate Impact on the Productivity of Sugar Beet (Beta vulgaris L.) in Europe. Climatic Change, 2003, 58, 93-108.	3.6	101
165	Pressure-based measures of the North Atlantic Oscillation (NAO): A comparison and an assessment of changes in the strength of the NAO and in its influence on surface climate parameters. Geophysical Monograph Series, 2003, , 51-62.	0.1	101
166	Extending Greenland temperature records into the late eighteenth century. Journal of Geophysical Research, 2006, 111, .	3.3	101
167	Variability of the surface atmospheric circulation over Europe, 1774-1995. International Journal of Climatology, 2000, 20, 1875-1897.	3.5	99
168	Effects of site change and urbanisation in the Beijing temperature series 1977–2006. International Journal of Climatology, 2010, 30, 1226-1234.	3.5	99
169	Accounting for the effects of volcanoes and ENSO in comparisons of modeled and observed temperature trends. Journal of Geophysical Research, 2001, 106, 28033-28059.	3.3	98
170	Trends in Mediterranean gridded temperature extremes and large-scale circulation influences. Natural Hazards and Earth System Sciences, 2011, 11, 2199-2214.	3.6	98
171	Urban Bias in Area-averaged Surface Air Temperature Trends. Bulletin of the American Meteorological Society, 1989, 70, 265-270.	3.3	97
172	A Mainland China Homogenized Historical Temperature Dataset of 1951–2004. Bulletin of the American Meteorological Society, 2009, 90, 1062-1065.	3.3	96
173	Amplification of wildfire area burnt by hydrological drought in the humid tropics. Nature Climate Change, 2017, 7, 428-431.	18.8	96
174	Tree-ring evidence of the widespread effects of explosive volcanic eruptions. Geophysical Research Letters, 1995, 22, 1333-1336.	4.0	95
175	On past temperatures and anomalous late-20th-century warmth. Eos, 2003, 84, 256-256.	0.1	95
176	European Alpine moisture variability for 1800–2003. International Journal of Climatology, 2007, 27, 415-427.	3.5	95
177	Were southern Swedish summer temperatures before 1860 as warm as measured?. International Journal of Climatology, 2003, 23, 1495-1521.	3.5	94
178	Precipitation in Britain: An analysis of areaâ€average data updated to 1989. International Journal of Climatology, 1991, 11, 331-345.	3.5	94
179	Multiâ€centennial summer and winter precipitation variability in southern South America. Geophysical Research Letters, 2010, 37, .	4.0	94
180	Predicting rainfall statistics in England and Wales using atmospheric circulation variables. International Journal of Climatology, 1998, 18, 523-539.	3.5	93

#	Article	IF	CITATIONS
181	Construction of a 10-min-gridded precipitation data set for the Greater Alpine Region for 1800–2003. Journal of Geophysical Research, 2006, 111, .	3.3	92
182	The use of weather types and air flow indices for GCM downscaling. Journal of Hydrology, 1998, 212-213, 348-361.	5.4	91
183	England and Wales precipitation: A discussion of recent changes in ariability and an update to 1985. Journal of Climatology, 1987, 7, 231-246.	0.7	90
184	Historical SAM Variability. Part I: Century-Length Seasonal Reconstructions*. Journal of Climate, 2009, 22, 5319-5345.	3.2	90
185	Regional climate model data used within the SWURVE project – 1: projected changes in seasonal patterns and estimation of PET. Hydrology and Earth System Sciences, 2007, 11, 1069-1083.	4.9	88
186	Instrumental temperature series in eastern and central China back to the nineteenth century. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8197-8207.	3.3	88
187	Evidence for global warming in the past decade. Nature, 1988, 332, 790-790.	27.8	87
188	Sea-level pressure variability around Antarctica since A.D. 1750 inferred from subantarctic tree-ring records. Climate Dynamics, 1997, 13, 375-390.	3.8	86
189	CLIWOC: A Climatological Database for the World's Oceans 1750–1854. Climatic Change, 2005, 73, 1-12.	3.6	86
190	THE SPATIAL RESPONSE OF THE CLIMATE SYSTEM TO EXPLOSIVE VOLCANIC ERUPTIONS. International Journal of Climatology, 1996, 16, 537-550.	3.5	85
191	The Need for a Dynamical Climate Reanalysis. Bulletin of the American Meteorological Society, 2007, 88, 495-502.	3.3	85
192	The importance of ship log data: reconstructing North Atlantic, European and Mediterranean sea level pressure fields back to 1750. Climate Dynamics, 2010, 34, 1115-1128.	3.8	85
193	The spatial and temporal characteristics of northern Hemisphere surface air temperature variations. Journal of Climatology, 1983, 3, 243-252.	0.7	83
194	Day-to-day temperature variability trends in 160- to 275-year-long European instrumental records. Journal of Geophysical Research, 2000, 105, 22849-22868.	3.3	83
195	Interpreting Differential Temperature Trends at the Surface and in the Lower Troposphere. Science, 2000, 287, 1227-1232.	12.6	83
196	An Evaluation of the Performance of the Twentieth Century Reanalysis Version 3. Journal of Climate, 2021, 34, 1417-1438.	3.2	83
197	Data rescue initiatives: bringing historical climate data into the 21st century. Climate Research, 2011, 47, 29-40.	1.1	82
198	Recent warming in global temperature series. Geophysical Research Letters, 1994, 21, 1149-1152.	4.0	81

#	Article	IF	CITATIONS
199	Climate change and coastal hydrographic response along the Atlantic Iberian margin (Tagus Prodelta) Tj ETQq1 1	0,784314 1.7	rgBT /Overl
200	Global Warming Trends. Scientific American, 1990, 263, 84-91.	1.0	80
201	Tree-ring based reconstructions of northern Patagonia precipitation since AD 1600. Holocene, 1998, 8, 659-674.	1.7	80
202	Title is missing!. Climatic Change, 1999, 42, 31-43.	3.6	79
203	Assessing future changes in extreme precipitation over Britain using regional climate model integrations. International Journal of Climatology, 2001, 21, 1337-1356.	3.5	79
204	A New Estimation of Urbanization's Contribution to the Warming Trend in China. Journal of Climate, 2015, 28, 8923-8938.	3.2	79
205	The reliability of global and hemispheric surface temperature records. Advances in Atmospheric Sciences, 2016, 33, 269-282.	4.3	79
206	Climate variability 50,000 years ago in mid-latitude Chile as reconstructed from tree rings. Nature, 2001, 410, 567-570.	27.8	78
207	Changes in the Northern Hemisphere annual cycle: Implications for paleoclimatology?. Journal of Geophysical Research, 2003, 108, .	3.3	78
208	State of the Climate in 2014. Bulletin of the American Meteorological Society, 2015, 96, ES1-ES32.	3.3	78
209	Land Surface Air Temperature Variations Across the Globe Updated to 2019: The CRUTEM5 Data Set. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2019JD032352.	3.3	78
210	Assessment of surface air warming in northeast China, with emphasis on the impacts of urbanization. Theoretical and Applied Climatology, 2010, 99, 469-478.	2.8	77
211	Climatic impact on the productivity of sugar beet in Europe, 1961–1995. Agricultural and Forest Meteorology, 2001, 109, 27-37.	4.8	76
212	Reassessing changes in diurnal temperature range: Intercomparison and evaluation of existing global data set estimates. Journal of Geophysical Research D: Atmospheres, 2016, 121, 5138-5158.	3.3	75
213	The Effect of Urban Warming on the Northern Hemisphere Temperature Average. Journal of Climate, 1989, 2, 285-290.	3.2	74
214	Relationships between circulation strength and the variability of growing-season and cold-season climate in northern and central Europe. Holocene, 2002, 12, 643-656.	1.7	74
215	Regional climate model simulations of daily maximum and minimum near-surface temperatures across Europe compared with observed station data 1961?1990. Climate Dynamics, 2004, 23, 695-715.	3.8	74
216	Variations in Surface Air Temperatures. Part 3: The Antarctic, 1957–82. Monthly Weather Review, 1984, 112, 1341-1353.	1.4	72

#	Article	IF	CITATIONS
217	Antarctic Temperatures over the Present Century—A Study of the Early Expedition Record. Journal of Climate, 1990, 3, 1193-1203.	3.2	72
218	Correlation methods in fingerprint detection studies. Climate Dynamics, 1993, 8, 265-276.	3.8	69
219	The urban heat island in Central London and urbanâ€related warming trends in Central London since 1900. Weather, 2009, 64, 323-327.	0.7	69
220	A Call for New Approaches to Quantifying Biases in Observations of Sea Surface Temperature. Bulletin of the American Meteorological Society, 2017, 98, 1601-1616.	3.3	69
221	Unlocking Pre-1850 Instrumental Meteorological Records: A Global Inventory. Bulletin of the American Meteorological Society, 2019, 100, ES389-ES413.	3.3	68
222	Estimation of global temperature trends: what's important and what isn't. Climatic Change, 2010, 100, 59-69.	3.6	65
223	The observed global warming record: What does it tell us?. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 8314-8320.	7.1	61
224	Climate reconstruction from tree rings: Part 2, spatial reconstruction of summer mean sea-level pressure patterns over Great Britain. Journal of Climatology, 1986, 6, 1-15.	0.7	59
225	Behaviour of New Zealand Glaciers and Atmospheric Circulation Changes over the Past 130 years. Holocene, 1992, 2, 97-106.	1.7	59
226	Improving the Gibraltar/Reykjavik NAO index. Geophysical Research Letters, 2003, 30, n/a-n/a.	4.0	58
227	Reconstructing the quasiâ€biennial oscillation back to the early 1900s. Geophysical Research Letters, 2007, 34, .	4.0	58
228	Trend of Surface Air Temperature in Eastern China and Associated Large-Scale Climate Variability over the Last 100 Years. Journal of Climate, 2014, 27, 4693-4703.	3.2	58
229	A new estimate of the China temperature anomaly series and uncertainty assessment in 1900–2006. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1-9.	3.3	58
230	Validation of GCM control simulations using indices of daily airflow types over the British Isles. Climate Dynamics, 1993, 9, 95-105.	3.8	57
231	Unusual Climate in Northwest Europe During the Period 1730 to 1745 Based on Instrumental and Documentary Data. Climatic Change, 2006, 79, 361-379.	3.6	57
232	Temperature trends at the surface and in the troposphere. Journal of Geophysical Research, 2006, 111, .	3.3	56
233	Comprehensive analysis of the climate variability in the eastern Mediterranean. Part I: map-pattern classification. International Journal of Climatology, 2007, 27, 1189-1214.	3.5	56
234	Antarctic near-surface air temperatures compared with ERA-Interim values since 1979. International Journal of Climatology, 2015, 35, 1354-1366.	3.5	56

PHIL JONES

#	Article	IF	CITATIONS
235	A new integrated and homogenized global monthly land surface air temperature dataset for the period since 1900. Climate Dynamics, 2018, 50, 2513-2536.	3.8	56
236	A comparison of large scale changes in surface humidity over land in observations and CMIP3 general circulation models. Environmental Research Letters, 2010, 5, 025210.	5.2	55
237	Climate reconstruction from tree rings: Part 1, basic methodology and preliminary results for England. Journal of Climatology, 1983, 3, 233-242.	0.7	54
238	Initial Selection of a GCOS Surface Network. Bulletin of the American Meteorological Society, 1997, 78, 2145-2152.	3.3	53
239	Soil moisture and predicted spells of extreme temperatures in Britain. Journal of Geophysical Research, 2005, 110, .	3.3	53
240	Extended riverflow reconstructions for England and Wales, 1865–2002. International Journal of Climatology, 2006, 26, 219-231.	3.5	53
241	Estimates of low frequency natural variabilit in near-surface air temperature. Holocene, 1996, 6, 255-263.	1.7	52
242	Prospects for downscaling seasonal precipitation variability using conditioned weather generator parameters. Hydrological Processes, 2002, 16, 1215-1234.	2.6	52
243	Longâ€ŧerm trends in precipitation and temperature across the Caribbean. International Journal of Climatology, 2016, 36, 3314-3333.	3.5	52
244	Principal component analysis of the lamb catalogue of daily weather types: Part 1, annual frequencies. Journal of Climatology, 1982, 2, 147-157.	0.7	51
245	Recent variations in mean temperature and the diurnal temperature range in the Antarctic. Geophysical Research Letters, 1995, 22, 1345-1348.	4.0	51
246	DECADAL VARIATIONS OF THE SOUTHERN HEMISPHERE CIRCULATION. International Journal of Climatology, 1996, 16, 723-738.	3.5	51
247	Instrumental pressure observations and atmospheric circulation from the 17th and 18th centuries: London and Paris. International Journal of Climatology, 2001, 21, 285-298.	3.5	50
248	Siberian high variability and its teleconnections with tropical circulations and surface air temperature over Saudi Arabia. Climate Dynamics, 2013, 41, 2003-2018.	3.8	50
249	Comparisons of Time Series of Annual Mean Surface Air Temperature for China since the 1900s: Observations, Model Simulations, and Extended Reanalysis. Bulletin of the American Meteorological Society, 2017, 98, 699-711.	3.3	50
250	Simulating climate change in UK cities using a regional climate model, HadRM3. International Journal of Climatology, 2012, 32, 1875-1888.	3.5	49
251	Global warming?. Nature, 1981, 291, 285-285.	27.8	48
252	Principal component analysis of the Lamb Catalogue of Daily Weather Types: Part 2, seasonal frequencies and update to 1987. International Journal of Climatology, 1990, 10, 549-563.	3.5	47

#	Article	IF	CITATIONS
253	Maximum and minimum temperature trends in Ireland, Italy, Thailand, Turkey and Bangladesh. Atmospheric Research, 1995, 37, 67-78.	4.1	47
254	Riverflow reconstructions for 15 catchments over England and Wales and an assessment of hydrologic drought since 1865. International Journal of Climatology, 1998, 18, 999-1013.	3.5	47
255	Influence of inhomogeneity on the estimation of mean and extreme temperature trends in Beijing and Shanghai. Advances in Atmospheric Sciences, 2001, 18, 309-322.	4.3	47
256	A roadmap to climate data rescue services. Geoscience Data Journal, 2018, 5, 28-39.	4.4	47
257	Independent confirmation of global land warming without the use of station temperatures. Geophysical Research Letters, 2013, 40, 3170-3174.	4.0	46
258	Long-term changes in seasonal temperature extremes over Saudi Arabia during 1981-2010. International Journal of Climatology, 2015, 35, 1579-1592.	3.5	46
259	Summer temperatures across northern North America: Regional reconstructions from 1760 using tree-ring densities. Journal of Geophysical Research, 1994, 99, 25835.	3.3	45
260	How well does the ERAâ€Interim reanalysis replicate trends in extremes of surface temperature across Europe?. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,262.	3.3	45
261	Probable causes of late twentieth century tropospheric temperature trends. Climate Dynamics, 2003, 21, 573-591.	3.8	43
262	Influence of large-scale atmospheric circulation on climate variability in the Greater Alpine Region of Europe. Journal of Geophysical Research, 2007, 112, .	3.3	43
263	Comprehensive analysis of the climate variability in the eastern Mediterranean. Part II: relationships between atmospheric circulation patterns and surface climatic elements. International Journal of Climatology, 2007, 27, 1351-1371.	3.5	42
264	Growing season temperatures over the former Soviet Union. International Journal of Climatology, 1995, 15, 943-959.	3.5	41
265	Recovery of nineteenth-century Tokyo/Osaka meteorological data in Japan. International Journal of Climatology, 2006, 26, 399-423.	3.5	41
266	HadISDH: an updateable land surface specific humidity product for climate monitoring. Climate of the Past, 2013, 9, 657-677.	3.4	41
267	Improved Understanding of Past Climatic Variability from Early Daily European Instrumental Sources. Climatic Change, 2002, 53, 1-4.	3.6	40
268	The minimization of the <i>screen bias</i> from ancient Western Mediterranean air temperature records: an exploratory statistical analysis. International Journal of Climatology, 2011, 31, 1879-1895.	3.5	40
269	The influence of the circulation on surface temperature and precipitation patterns over Europe. Climate of the Past, 2009, 5, 259-267.	3.4	40
270	Homogenization Techniques for European Monthly Mean Surface Pressure Series. Journal of Climate, 1999, 12, 2658-2672.	3.2	39

#	Article	IF	CITATIONS
271	The Daily Temperature Record for St. Petersburg (1743–1996). Climatic Change, 2002, 53, 253-267.	3.6	39
272	Central European precipitation and temperature extremes in relation to large-scale atmospheric circulation types. Meteorologische Zeitschrift, 2009, 18, 397-410.	1.0	39
273	Central Asia's Changing Climate: How Temperature and Precipitation Have Changed across Time, Space, and Altitude. Climate, 2019, 7, 123.	2.8	39
274	Pre-1872 Extension of the Japanese Instrumental Meteorological Observation Series back to 1819. Journal of Climate, 2003, 16, 118-131.	3.2	39
275	Assessments of the reliability of NCEP circulation data and relationships with surface climate by direct comparisons with station based data. Climate Research, 2001, 17, 247-261.	1.1	39
276	Atmospheric carbon dioxide: Predicting plant productivity and water resources. Nature, 1984, 312, 102-103.	27.8	38
277	Interannual variability in the Uruguay river basin. International Journal of Climatology, 2003, 23, 103-115.	3.5	37
278	Urbanization effects on the air temperature rise in Saudi Arabia. Climatic Change, 2013, 120, 109-122.	3.6	37
279	Using ERA-Interim reanalysis for creating datasets ofÂenergy-relevant climate variables. Earth System Science Data, 2017, 9, 471-495.	9.9	37
280	Comparison of climate change scenario construction methodologies for impact assessment studies. Agricultural and Forest Meteorology, 1998, 91, 51-67.	4.8	36
281	Air flow influences on local climate: observed and simulated mean relationships for the United Kingdom. Climate Research, 1999, 13, 173-191.	1.1	36
282	Re-construction of historic drought in the Anglian Region (UK) over the period 1798–2010 and the implications for water resources and drought management. Journal of Hydrology, 2015, 526, 231-252.	5.4	36
283	Climatic warming in China during 1901–2015 based on an extended dataset of instrumental temperature records. Environmental Research Letters, 2017, 12, 064005.	5.2	35
284	SUMMER MOISTURE AVAILABILITY OVER EUROPE IN THE HADLEY CENTRE GENERAL CIRCULATION MODEL BASED ON THE PALMER DROUGHT SEVERITY INDEX. International Journal of Climatology, 1996, 16, 155-172.	3.5	34
285	Recent trends in weather and seasonal cycles: An analysis of daily data from Europe and China. Journal of Geophysical Research, 2001, 106, 5123-5138.	3.3	34
286	Riverflow reconstruction from precipitation data. Journal of Climatology, 1984, 4, 171-186.	0.7	33
287	On increasing global temperatures: 75 years after Callendar. Quarterly Journal of the Royal Meteorological Society, 2013, 139, 1961-1963.	2.7	33
288	Principal componentsâ€based regionalization of the Saudi Arabian climate. International Journal of Climatology, 2015, 35, 2555-2573.	3.5	33

#	Article	IF	CITATIONS
289	Scaling of Central England Temperature Fluctuations?. Atmospheric Science Letters, 2001, 2, 143-154.	1.9	32
290	The development of monthly temperature series for Scotland and Northern Ireland. International Journal of Climatology, 2004, 24, 569-590.	3.5	32
291	An intercomparison of trends in surface air temperature analyses at the global, hemispheric, and grid-box scale. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	32
292	Analysis of <scp>UK</scp> precipitation extremes derived from Met Office gridded data. International Journal of Climatology, 2014, 34, 2438-2449.	3.5	32
293	Antarctic Gridded Sea Level Pressure Data: An Analysis and Reconstruction Back to 1957. Journal of Climate, 1988, 1, 1199-1220.	3.2	31
294	Southern hemisphere seaâ€level pressure data: An analysis and reconstructions back to 1951 and 1911. International Journal of Climatology, 1991, 11, 585-607.	3.5	31
295	Estimates of the North Atlantic Oscillation back to 1692 using a Paris–London westerly index. International Journal of Climatology, 2013, 33, 228-248.	3.5	31
296	On "observation minus reanalysis―method: A view from multidecadal variability. Journal of Geophysical Research D: Atmospheres, 2013, 118, 7450-7458.	3.3	31
297	Towards a global land surface climate fiducial reference measurements network. International Journal of Climatology, 2018, 38, 2760-2774.	3.5	31
298	Multiâ€century trends to wetter winters and drier summers in the England and Wales precipitation series explained by observational and sampling bias in early records. International Journal of Climatology, 2020, 40, 610-619.	3.5	31
299	The Use of Indices to Identify Changes in Climatic Extremes. , 1999, , 131-149.		31
300	A rescued dataset of sub-daily meteorological observations for Europe and the southern Mediterranean region, 1877–2012. Earth System Science Data, 2018, 10, 1613-1635.	9.9	31
301	Detecting inhomogeneity in daily climate series using wavelet analysis. Advances in Atmospheric Sciences, 2008, 25, 157-163.	4.3	30
302	The Scope of Medieval Warming. Science, 2001, 292, 2011b-2012.	12.6	30
303	Riverflow reconstruction from tree rings in southern Britain. Journal of Climatology, 1984, 4, 461-472.	0.7	29
304	Reconstruction of New Zealand climate indices back to AD 1731 using dendroclimatic techniques: Some preliminary results. International Journal of Climatology, 1994, 14, 1135-1149.	3.5	29
305	Constraints on the temperature sensitivity of global soil respiration from the observed interannual variability in atmospheric CO2. Atmospheric Science Letters, 2001, 2, 166-172.	1.9	29
306	Evaluation of HadCM2 and Direct Use of Daily GCM Data in Impact Assessment Studies. Climatic Change, 1999, 41, 583-614.	3.6	28

#	Article	IF	CITATIONS
307	Preliminary Reconstructions of the North Atlantic Oscillation and the Southern Oscillation Index from Measures of Wind Strength and Direction Taken During the Cliwoc Period. Climatic Change, 2005, 73, 131-154.	3.6	28
308	An extended network of documentary data from South America and its potential for quantitative precipitation reconstructions back to the 16th century. Geophysical Research Letters, 2009, 36, .	4.0	28
309	A daily series of mean seaâ€level pressure for London, 1692–2007. International Journal of Climatology, 2012, 32, 641-656.	3.5	28
310	Early European Instrumental Records. , 2001, , 55-77.		28
311	Recent temperature changes in the Arctic and Antarctic. Nature, 1983, 306, 458-459.	27.8	27
312	Surface climate responses to explosive volcanic eruptions seen in long European temperature records and mid-to-high latitude tree-ring density around the Northern Hemisphere. Geophysical Monograph Series, 2003, , 239-254.	0.1	27
313	Late Holocene coastal hydrographic and climate changes in the eastern North Sea. Holocene, 2006, 16, 987-1001.	1.7	27
314	A daily series of mean seaâ€level pressure for Paris, 1670–2007. International Journal of Climatology, 2012, 32, 1135-1150.	3.5	27
315	A New Evaluation of the Role of Urbanization to Warming at Various Spatial Scales: Evidence From the Guangdongâ€Hong Kongâ€Macau Region, China. Geophysical Research Letters, 2020, 47, e2020GL089152.	4.0	27
316	Consistency of global warming trends strengthened since 1880s. Science Bulletin, 2020, 65, 1709-1712.	9.0	27
317	CLIMATE CHANGE: It Was the Best of Times, It Was the Worst of Times. Science, 1998, 280, 544-545.	12.6	26
318	Effect of Observational Sampling Error on the Detection of Anthropogenic Climate Change*. Journal of Climate, 2001, 14, 198-207.	3.2	26
319	Historical climatology ―a state of the art review. Weather, 2008, 63, 181-186.	0.7	26
320	Observed and modelled influence of atmospheric circulation on central England temperature extremes. International Journal of Climatology, 2009, 29, 1642-1660.	3.5	26
321	Decadal variations in the nocturnal heat island of London. Weather, 2011, 66, 59-64.	0.7	26
322	The development of Lamb weather types: from subjective analysis of weather charts to objective approaches using reanalyses. Weather, 2014, 69, 128-132.	0.7	26
323	An updated evaluation of the global mean land surface air temperature and surface temperature trends based on CLSAT and CMST. Climate Dynamics, 2021, 56, 635-650.	3.8	26
324	Reliable yield of reservoirs and possible effects of climatic change. Hydrological Sciences Journal, 1991, 36, 579-598.	2.6	25

#	Article	IF	CITATIONS
325	TEMPERATURES AND WINDINESS OVER THE UNITED KINGDOM DURING THE WINTERS OF 1988/89 AND 1989/90 COMPARED WITH PREVIOUS YEARS. Weather, 1991, 46, 126-136.	0.7	25
326	Land surface temperatures - is the network good enough?. Climatic Change, 1995, 31, 545-558.	3.6	25
327	The surface temperatures of Earth: steps towards integrated understanding of variability and change. Geoscientific Instrumentation, Methods and Data Systems, 2013, 2, 305-321.	1.6	25
328	Clobal land surface air temperature dynamics since 1880. International Journal of Climatology, 2018, 38, e466.	3.5	25
329	Improved Understanding of Past Climatic Variability from Early Daily European Instrumental Sources. , 2002, , 1-4.		25
330	Spatial patterns of variability in the global surface air temperature data set. Journal of Geophysical Research, 1999, 104, 24237-24256.	3.3	24
331	A reconstruction of Madras (Chennai) mean sea-level pressure using instrumental records from the late 18th and early 19th centuries. International Journal of Climatology, 2002, 22, 1119-1142.	3.5	24
332	Trends in hemispheric warm and cold anomalies. Geophysical Research Letters, 2014, 41, 9065-9071.	4.0	24
333	Multi-Scale Entropy Analysis as a Method for Time-Series Analysis of Climate Data. Climate, 2015, 3, 227-240.	2.8	24
334	Atmospheric circulation patterns in the Arab region and its relationships with Saudi Arabian surface climate: A preliminary assessment. Atmospheric Research, 2015, 161-162, 36-51.	4.1	24
335	Continental scale surface air temperature variations: Experience derived from the Chinese region. Earth-Science Reviews, 2020, 200, 102998.	9.1	24
336	European Tree Rings and Climate in the 16th Century. Climatic Change, 1999, 43, 151-168.	3.6	23
337	Air flow influences on local climate: observed United Kingdom climate variations. Atmospheric Science Letters, 2000, 1, 62-74.	1.9	23
338	Long-term temperature and precipitation records from the Falkland Islands. International Journal of Climatology, 2015, 35, 1224-1231.	3.5	23
339	Human-induced changes in Indonesian peatlands increase drought severity. Environmental Research Letters, 2020, 15, 084013.	5.2	23
340	Removal of the El Niño-Southern Oscillation signal from the gridded surface air temperature data set. Journal of Geophysical Research, 1996, 101, 19013-19022.	3.3	22
341	Perturbing a Weather Generator using change factors derived from Regional Climate Model simulations. Nonlinear Processes in Geophysics, 2011, 18, 503-511.	1.3	22
342	A Southeastern South American Daily Gridded Dataset of Observed Surface Minimum and Maximum Temperature for 1961–2000. Bulletin of the American Meteorological Society, 2011, 92, 1339-1346.	3.3	22

#	Article	IF	CITATIONS
343	The Assessment of Global Surface Temperature Change from 1850s: The C-LSAT2.0 Ensemble and the CMST-Interim Datasets. Advances in Atmospheric Sciences, 2021, 38, 875-888.	4.3	22
344	Projections of the advance in the start of the growing season during the 21st century based on CMIP5 simulations. Advances in Atmospheric Sciences, 2015, 32, 831-838.	4.3	21
345	Arabian Peninsula wet season dust storm distribution: regionalization and trends analysis (1983–2013). International Journal of Climatology, 2017, 37, 1356-1373.	3.5	21
346	Creating a proof-of-concept climate service to assess future renewable energy mixes in Europe: An overview of the C3S ECEM project. Advances in Science and Research, 0, 15, 191-205.	1.0	21
347	Different climate response persistence causes warming trend unevenness at continental scales. Nature Climate Change, 2022, 12, 343-349.	18.8	21
348	Global climate change in the instrumental period. Environmental Pollution, 1994, 83, 23-36.	7.5	20
349	Comparisons between the microwave sounding unit temperature record and the surface temperature record from 1979 to 1996: Real differences or potential discontinuities?. Journal of Geophysical Research, 1997, 102, 30135-30145.	3.3	20
350	Comparisons of two methods of removing anthropogenically related variability from the near-surface observational temperature field. Journal of Geophysical Research, 1998, 103, 13777-13786.	3.3	20
351	The Met. Office - fit for the 21st Century?. Atmospheric Science Letters, 2000, 1, 156-169.	1.9	20
352	Twentieth-Century Trends in the Annual Cycle of Temperature across the Northern Hemisphere. Journal of Climate, 2017, 30, 5755-5773.	3.2	20
353	Trends of Extreme Temperatures in Europe and China Based on Daily Observations. , 2002, , 355-392.		20
354	The "Little Ice Age": Local and Global Perspectives. , 2001, 48, 5-8.		19
355	Anomalous mid-twentieth century atmospheric circulation change over the South Atlantic compared to the last 6000 years. Environmental Research Letters, 2016, 11, 064009.	5.2	19
356	Determining and interpreting the order of a two-state Markov Chain: Application to models of daily precipitation. Water Resources Research, 1992, 28, 1443-1446.	4.2	18
357	Seasonal mean pressure reconstruction for the North Atlantic (1750–1850) based on early marine data. Climate of the Past, 2005, 1, 19-33.	3.4	18
358	Low-frequency response of the upper ParanÃ; basin. International Journal of Climatology, 2008, 28, 351-360.	3.5	18
359	A historical surface climate dataset from station observations in Mediterranean North Africa and Middle East areas. Geoscience Data Journal, 2014, 1, 121-128.	4.4	18
360	Adjusting inhomogeneous daily temperature variability using wavelet analysis. International Journal of Climatology, 2014, 34, 1196-1207.	3.5	18

#	Article	IF	CITATIONS
361	Longâ€term trends in gale days and storminess for the Falkland Islands. International Journal of Climatology, 2016, 36, 1413-1427.	3.5	18
362	Decadal changes in 1870–2004 Northern Hemisphere winter sea level pressure variability and its relationship with surface temperature. Journal of Geophysical Research, 2007, 112, .	3.3	17
363	Synoptic messages to extend climate data records. Journal of Geophysical Research, 2012, 117, .	3.3	17
364	Updated precipitation series for the UK derived from Met Office gridded data. International Journal of Climatology, 2012, 32, 2271-2282.	3.5	17
365	Estimation of the absolute surface air temperature of the Earth. Journal of Geophysical Research D: Atmospheres, 2013, 118, 3213-3217.	3.3	17
366	Data sources for rescuing the rich heritage of <scp>M</scp> editerranean historical surface climate data. Geoscience Data Journal, 2014, 1, 61-73.	4.4	17
367	WMO Evaluation of Two Extreme High Temperatures Occurring in February 2020 for the Antarctic Peninsula Region. Bulletin of the American Meteorological Society, 2021, 102, E2053-E2061.	3.3	17
368	Climatic Variability and Uruguay River Flows. Water International, 2000, 25, 446-456.	1.0	16
369	Long pressure series for Barcelona (Spain). Daily reconstruction and monthly homogenization. International Journal of Climatology, 2001, 21, 1693-1704.	3.5	16
370	Assessing the robustness of zonal mean climate change detection. Geophysical Research Letters, 2002, 29, 26-1-26-4.	4.0	16
371	A decisionâ€ŧree approach to seasonal prediction of extreme precipitation in eastern China. International Journal of Climatology, 2020, 40, 255-272.	3.5	16
372	Climate Change in Poland in the Past Centuries and its Relationship to European Climate: Evidence from Reconstructions and Coupled Climate Models. , 2010, , 3-39.		15
373	Temperature trends in regions affected by increasing aridity/humidity. Geophysical Research Letters, 2001, 28, 3919-3922.	4.0	14
374	An 800-year reconstruction of Elbe River discharge and German Bight sea-surface salinity. Holocene, 2005, 15, 429-434.	1.7	14
375	Regional climate model data used within the SWURVE project – 2: addressing uncertainty in regional climate model data for five European case study areas. Hydrology and Earth System Sciences, 2007, 11, 1085-1096.	4.9	14
376	An examination of storm activity in the northeast Atlantic region over the 1851–2003 period using the EMULATE gridded MSLP data series. Journal of Geophysical Research, 2011, 116, .	3.3	14
377	Construction of a daily precipitation grid for southeastern South America for the period 1961–2000. International Journal of Climatology, 2013, 33, 2508-2519.	3.5	14
378	Downscaling regional climate model outputs for the Caribbean using a weather generator. International Journal of Climatology, 2016, 36, 4141-4163.	3.5	14

#	Article	IF	CITATIONS
379	Development of High Resolution and Homogenized Gridded Land Surface Air Temperature Data: A Case Study Over Pan-East Asia. Frontiers in Environmental Science, 2020, 8, .	3.3	14
380	The Effect of Tropical Explosive Volcanic Eruptions on Surface Air Temperature. , 1996, , 95-111.		14
381	Paraguay river basin response to seasonal rainfall. International Journal of Climatology, 2006, 26, 1267-1278.	3.5	13
382	Comment on "Unresolved issues with the assessment of multidecadal global land surface temperature trends―by Roger A. Pielke Sr. et al Journal of Geophysical Research, 2009, 114, .	3.3	13
383	Cool North European summers and possible links to explosive volcanic eruptions. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6259-6265.	3.3	13
384	Winterâ€responding proxy temperature reconstructions and the North Atlantic Oscillation. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6497-6505.	3.3	13
385	Further-Adjusted Long-Term Temperature Series in China Based on MASH. Advances in Atmospheric Sciences, 2018, 35, 909-917.	4.3	13
386	Recurrent transitions to Little Ice Age-like climatic regimes over the Holocene. Climate Dynamics, 2021, 56, 3817-3833.	3.8	13
387	Global Temperature Patterns. Science, 1998, 280, 2027e-2027.	12.6	13
388	A New Daily Observational Record from Grytviken, South Georgia: Exploring Twentieth-Century Extremes in the South Atlantic. Journal of Climate, 2018, 31, 1743-1755.	3.2	12
389	Evidence for increased expression of the Amundsen Sea Low over the South Atlantic during the late Holocene. Climate of the Past, 2018, 14, 1727-1738.	3.4	12
390	What can the instrumental record tell us about longer timescale paleoclimatic reconstructions?. , 1996, , 625-644.		12
391	Intercomparison of four different Southern Hemisphere sea level pressure datasets. Geophysical Research Letters, 2007, 34, .	4.0	11
392	An analysis of rainfall across the British Isles in the 1870s. International Journal of Climatology, 2015, 35, 2934-2947.	3.5	11
393	Vegetation Greening Offsets Urbanizationâ€Induced Fast Warming in Guangdong, Hong Kong, and Macao Region (GHMR). Geophysical Research Letters, 2021, 48, e2021GL095217.	4.0	11
394	Circulation Changes in Europe since the 1780s. , 2001, , 79-99.		11
395	Towards the detection and attribution of an anthropogenic effect on climate. Climate Dynamics, 1995, 12, 77-100.	3.8	11
396	Do large-area-average temperature series have an urban warming bias?. Climatic Change, 1988, 12, 313-319.	3.6	10

#	Article	IF	CITATIONS
397	Satellite data under scrutiny. Nature, 1990, 344, 711-711.	27.8	10
398	GLOBAL WARMTH IN 1990. Weather, 1991, 46, 302-311.	0.7	10
399	Impact of rainfall estimation uncertainty on streamflow estimations for catchments Wye and Tyne in the United Kingdom. International Journal of Climatology, 2009, 29, 79-86.	3.5	10
400	Construction of homogenized daily surface air temperature for the city of Tianjin during 1887–2019. Earth System Science Data, 2021, 13, 2211-2226.	9.9	10
401	A novel statistical decomposition of the historical change in global mean surface temperature. Environmental Research Letters, 2021, 16, 054057.	5.2	10
402	Testing for Bias in the Climate Record. Science, 1996, 271, 1879-1879.	12.6	9
403	Daily temperature and pressure series for Salem, Massachusetts (1786–1829). Climatic Change, 2008, 87, 499-515.	3.6	9
404	European Trend Atlas of Extreme Temperature and Precipitation Records. , 2015, , .		9
405	Potential Predictability of Seasonal Extreme Precipitation Accumulation in China. Journal of Hydrometeorology, 2017, 18, 1071-1080.	1.9	9
406	Recent United Kingdom and global temperature variations. Weather, 2017, 72, 323-329.	0.7	9
407	The Daily Temperature Record for St. Petersburg (1743–1996). , 2002, , 253-267.		9
408	Description of the China global Merged Surface Temperature version 2.0. Earth System Science Data, 2022, 14, 1677-1693.	9.9	9
409	Intercomparison of Two Different Southern Hemisphere Sea Level Pressure Datasets. Journal of Climate, 1992, 5, 93-99.	3.2	8
410	Spatiotemporal Stochastic Simulation of Monthly Rainfall Patterns in the United Kingdom (1980–87). Journal of Climate, 2007, 20, 4194-4210.	3.2	8
411	Assessment of Maximum Possible Urbanization Influences on Land Temperature Data by Comparison of Land and Marine Data around Coasts. Atmosphere, 2010, 1, 51-61.	2.3	8
412	Design flood flows with climate change: method and limitations. Water Management, 2012, 165, 553-565.	1.2	8
413	Reconstruction of Lamb weather type series back to the eighteenth century. Climate Dynamics, 2019, 52, 6131-6148.	3.8	8
414	Definition of a temporal distribution index for high temporal resolution precipitation data over Peninsular Spain and the Balearic Islands: the fractal dimension; and its synoptic implications. Climate Dynamics, 2019, 52, 439-456.	3.8	8

#	Article	IF	CITATIONS
415	Causes of interannual global temperature variations over the period since 1861. , 1988, , 18-34.		7
416	The climate of the past 1000 years. Endeavour, 1990, 14, 129-136.	0.4	7
417	The contribution of Hubert H. Lamb to the study of volcanic effects on climate. Weather, 1998, 53, 209-222.	0.7	7
418	Comment on "Influence of the Southern Oscillation on tropospheric temperature―by J. D. McLean, C. R. de Freitas, and R. M. Carter. Journal of Geophysical Research, 2010, 115, .	3.3	7
419	Changes in climate and variability over the last 1000 years. International Geophysics, 2002, 83, 133-142.	0.6	6
420	Response "[to Comment on â€~On past temperatures and anomalous late-20th-century warmth'â€]. Eos, 2003, 84, 473.	0.1	6
421	The Tosontsengel Mongolia world record seaâ€level pressure extreme: spatial analysis of elevation bias in adjustmentâ€toâ€seaâ€level pressures. International Journal of Climatology, 2015, 35, 2968-2977.	3.5	5
422	Climatic Change and Long-Term Climatic Variability. , 1998, , 337-363.		5
423	Changes in Atmospheric Circulation and Climate Over the North Atlantic and Europe. , 1998, , 1-13.		5
424	The Rapidity of CO2-Induced Climatic Change: Observations, Model Results and Palaeoclimatic Implications. , 1987, , 47-55.		4
425	Editorial: Late Holocene oceanographic and climate change from the western European margin: the results of the HOLSMEER project. Holocene, 2006, 16, 931-935.	1.7	4
426	WMO evaluation of northern hemispheric coldest temperature: â^'69.6 °C at Klinck, Greenland, 22 December 1991. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 21-29.	2.7	4
427	Unlocking the Doors to the Past: Recent Developments in Climate and Climate Impact Research. , 2001, , 1 -8.		4
428	Instrumental Temperature Change in the Context of the Last 1000 Years. , 2001, , 55-68.		4
429	A la recherche du temps perdu. Nature, 1996, 381, 375-376.	27.8	3
430	Title is missing!. Climatic Change, 2001, 50, 509-510.	3.6	3
431	Surface atmospheric circulation over Europe following major tropical volcanic eruptions, 1780–1995. Geophysical Monograph Series, 2003, , 273-281.	0.1	3
432	Using sound to represent uncertainty in UKCP09 data with Google Maps API. Atmospheric Science Letters, 2013, 14, 220-226.	1.9	3

#	Article	IF	CITATIONS
433	Consistency of Modeled and Observed Temperature Trends in the Tropical Troposphere. , 2018, , 85-136.		3
434	Evaluating Highest-Temperature Extremes in the Antarctic. Eos, 2017, , .	0.1	3
435	Comment on â€~homogeneity analysis of rainfall series-an application of the use of a realistic rainfall model'. Journal of Climatology, 1985, 5, 337-341.	0.7	2
436	Climate change scenarios for Great Britain and Europe. Studies in Environmental Science, 1995, 65, 397-400.	0.0	2
437	Storminess and cold air outbreaks in NE America during AD 1790–1820. Geophysical Research Letters, 2008, 35, .	4.0	2
438	Development of a nearâ€realâ€time global in situ daily precipitation dataset for 0000–0000 UTC. International Journal of Climatology, 2020, 40, 2795-2810.	3.5	2
439	Precipitation measurements and trends in the twentieth century. International Journal of Climatology, 2001, 21, 1889.	3.5	2
440	Global surface temperatures. Nature, 1996, 381, 270-270.	27.8	1
441	Ascribing potential causes of recent trends in free atmosphere temperatures. Atmospheric Science Letters, 2001, 2, 132-142.	1.9	1
442	Letters to the Editor: Circulation anomalies and UK climate. Weather, 2003, 58, 129-130.	0.7	1
443	Analysing changes in short-duration extreme rainfall events. Water Management, 2016, 169, 201-211.	1.2	1
444	Extratropical circulation indices in the Southern Hemisphere based on station data. International Journal of Climatology, 1999, 19, 1301-1317.	3.5	1
445	Monthly mean pressure reconstruction for the Late Maunder Minimum Period (AD 1675–1715). International Journal of Climatology, 2000, 20, 1049-1066.	3.5	1
446	Climate models and climate extremes. Building Services Engineering Research and Technology, 2002, 23, 287-293.	1.8	0
447	Greenhouse Effect and Climate Data. , 2003, , 87-106.		Ο
448	Climate Record: Surface Temperature Trends â~†. , 2018, , .		0
449	The development of long temperature and precipitation series for Ascension Island. International Journal of Climatology, 0, , .	3.5	0
450	Land Surface Temperatures $\hat{a} \in \tilde{~}$ is the Network Good Enough?. , 1996, , 415-428.		0

#	Article	IF	CITATIONS
451	Global Surface Temperature Changes Since the 1850s. The IMA Volumes in Mathematics and Its Applications, 1996, , 223-237.	0.5	0
452	European Tree Rings and Climate in the 16th Century. , 1999, , 151-168.		0
453	Predicting rainfall statistics in England and Wales using atmospheric circulation variables. International Journal of Climatology, 1998, 18, 523-539.	3.5	0