Guy F Midgley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1563728/publications.pdf

Version: 2024-02-01

162 24,475 60 143
papers citations h-index g-index

167 167 27566
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Succulent Karoo Biome. , 2024, , 251-263.		o
2	Actions to halt biodiversity loss generally benefit the climate. Global Change Biology, 2022, 28, 2846-2874.	4.2	51
3	Assessing protected area vulnerability to climate change in a case study of South African national parks. Conservation Biology, 2022, 36, .	2.4	5
4	Plant specialisation may limit climateâ€induced vegetation change to within topographic and edaphic niches on a subâ€Antarctic island. Functional Ecology, 2022, 36, 2636-2648.	1.7	3
5	Intraspecific trait variation influences physiological performance and fitness in the South Africa shrub genus <i>Protea</i> (Proteaceae). Annals of Botany, 2021, 127, 519-531.	1.4	9
6	Large uncertainties in future biome changes in Africa call for flexible climate adaptation strategies. Global Change Biology, 2021, 27, 340-358.	4.2	36
7	Mechanistic reconciliation of community and invasion ecology. Ecosphere, 2021, 12, e03359.	1.0	21
8	The ecoâ€evolutionary significance of rainfall constancy for facultative CAM photosynthesis. New Phytologist, 2021, 230, 1653-1664.	3.5	7
9	Endemism increases species' climate change risk in areas of global biodiversity importance. Biological Conservation, 2021, 257, 109070.	1.9	120
10	Diverse trends in observed pan evaporation in South Africa suggest multiple interacting drivers. South African Journal of Science, 2021, 117 , .	0.3	4
11	Broadening Predictive Understanding of Species' Range Responses to Climate Change: The Case of Aloidendron dichotomum. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	5
12	Assemblage reorganization of South African dragonflies due to climate change. Diversity and Distributions, 2021, 27, 2542-2558.	1.9	5
13	Describing a drowned Pleistocene ecosystem: Last Glacial Maximum vegetation reconstruction of the Palaeo-Agulhas Plain. Quaternary Science Reviews, 2020, 235, 105866.	1.4	39
14	Invasive grasses of sub-Antarctic Marion Island respond to increasing temperatures at the expense of chilling tolerance. Annals of Botany, 2020, 125, 765-773.	1.4	5
15	Post-2020 biodiversity targets need to embrace climate change. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30882-30891.	3.3	160
16	Organizing principles for vegetation dynamics. Nature Plants, 2020, 6, 444-453.	4.7	95
17	30% land conservation and climate action reduces tropical extinction risk by more than 50%. Ecography, 2020, 43, 943-953.	2.1	94
18	An operational definition of the biome for global change research. New Phytologist, 2020, 227, 1294-1306.	3.5	33

#	Article	IF	CITATIONS
19	Investments' role in ecosystem degradationâ€"Response. Science, 2020, 368, 377-377.	6.0	5
20	Biological Invasions as a Component of South Africa's Global Change Research Effort. , 2020, , 855-878.		9
21	Nitrogen-fixing bacteria and Oxalis – evidence for a vertically inherited bacterial symbiosis. BMC Plant Biology, 2019, 19, 441.	1.6	7
22	The Trouble with Trees: Afforestation Plans for Africa. Trends in Ecology and Evolution, 2019, 34, 963-965.	4.2	164
23	Linking scales and disciplines: an interdisciplinary cross-scale approach to supporting climate-relevant ecosystem management. Climatic Change, 2019, 156, 139-150.	1.7	13
24	Oxalis seeds from the Cape Flora have a spectrum of germination strategies. American Journal of Botany, 2019, 106, 879-893.	0.8	1
25	Partitioning of above and below ground costs during phosphate stress in Medicago truncatula. Journal of Plant Nutrition, 2019, 42, 759-771.	0.9	0
26	The commonness of rarity: Global and future distribution of rarity across land plants. Science Advances, 2019, 5, eaaz0414.	4.7	194
27	Pervasive human-driven decline of life on Earth points to the need for transformative change. Science, 2019, 366, .	6.0	1,213
28	IPCC Land report: Commentary. Clean Air Journal, 2019, 29, .	0.2	0
29	A cycad's nonâ€saturating response to carbon dioxide enrichment indicates Cenozoic carbon limitation in preâ€historic plants. Austral Ecology, 2018, 43, 447-455.	0.7	6
30	Steal the light: shade vs fire adapted vegetation in forest–savanna mosaics. New Phytologist, 2018, 218, 1419-1429.	3.5	73
31	Remotely sensed canopy height reveals three pantropical ecosystem states: aÂcomment. Ecology, 2018, 99, 231-234.	1.5	3
32	Human impacts in African savannas are mediated by plant functional traits. New Phytologist, 2018, 220, 10-24.	3.5	114
33	Narrowing pathways to a sustainable future. Science, 2018, 360, 714-715.	6.0	4
34	CO2 enrichment does not entirely ameliorate Vachellia karroo drought inhibition: A missing mechanism explaining savanna bush encroachment. Environmental and Experimental Botany, 2018, 155, 98-106.	2.0	16
35	Fire frequency filters species by bark traits in a savanna–forest mosaic. Journal of Vegetation Science, 2017, 28, 728-735.	1.1	35
36	Climate Change Impacts on Dwarf Succulents in Namibia as a Result of Changes in Fog and Relative Humidity. Journal of Water Resource and Hydraulic Engineering, 2017, 6, 57-63.	0.2	10

3

#	Article	IF	CITATIONS
37	Explaining patterns of avian diversity and endemicity: climate and biomes of southern Africa over the last 140,000Âyears. Journal of Biogeography, 2016, 43, 874-886.	1.4	25
38	Biodiversity and climate change: Risks to dwarf succulents in Southern Africa. Journal of Arid Environments, 2016, 129, 16-24.	1.2	18
39	Ecological research and conservation management in the Cape Floristic Region between 1945 and 2015: History, current understanding and future challenges. Transactions of the Royal Society of South Africa, 2016, 71, 207-303.	0.8	44
40	A Socio-Ecological Approach for Identifying and Contextualising Spatial Ecosystem-Based Adaptation Priorities at the Sub-National Level. PLoS ONE, 2016, 11, e0155235.	1.1	32
41	Determinants of the Fynbos/Succulent Karoo biome boundary: Insights from a reciprocal transplant experiment. South African Journal of Botany, 2015, 101, 120-128.	1.2	19
42	Fire-mediated disruptive selection can explain the reseeder–resprouter dichotomy in Mediterranean-type vegetation. Oecologia, 2015, 177, 367-377.	0.9	12
43	Assessing species vulnerability to climate change. Nature Climate Change, 2015, 5, 215-224.	8.1	856
44	Functional differentiation of biomes in an African savanna/forest mosaic. South African Journal of Botany, 2015, 101, 82-90.	1.2	53
45	Bud protection: a key trait for species sorting in a forest–savanna mosaic. New Phytologist, 2015, 207, 1052-1060.	3.5	88
46	Future of African terrestrial biodiversity and ecosystems under anthropogenic climate change. Nature Climate Change, 2015, 5, 823-829.	8.1	133
47	Hydrological Niche of Restionaceae Species in Silvermine South Africa. Journal of Water Resource and Hydraulic Engineering, 2015, 4, 286-292.	0.2	0
48	Climate change impacts and adaptation in South Africa. Wiley Interdisciplinary Reviews: Climate Change, 2014, 5, 605-620.	3.6	228
49	Suborbital climatic variability and centres of biological diversity in the Cape region of southern Africa. Journal of Biogeography, 2014, 41, 1338-1351.	1.4	17
50	Impacts of climate change in the Greater Cape Floristic Region. , 2014, , 299-320.		23
51	Effects of time since fire on birds in a plant diversity hotspot. Acta Oecologica, 2013, 49, 99-106.	0.5	35
52	Variance and ecological transitions. Nature Climate Change, 2013, 3, 706-707.	8.1	2
53	Impacts of past habitat loss and future climate change on the range dynamics of South African Proteaceae. Diversity and Distributions, 2013, 19, 363-376.	1.9	33
54	Limits to adaptation. Nature Climate Change, 2013, 3, 305-307.	8.1	280

#	Article	IF	Citations
55	To converge or not to converge in environmental space: testing for similar environments between analogous succulent plants of North America and Africa. Annals of Botany, 2013, 111, 1125-1138.	1.4	23
56	Exploring the significance of land-cover change in South Africa. South African Journal of Science, 2012, 108, .	0.3	4
57	The Reforestation of Africa?. South African Journal of Science, 2012, 108, .	0.3	0
58	Carbon dioxide and the uneasy interactions of trees and savannah grasses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 601-612.	1.8	349
59	How to understand species' niches and range dynamics: a demographic research agenda for biogeography. Journal of Biogeography, 2012, 39, 2146-2162.	1.4	249
60	A physiological analogy of the niche for projecting the potential distribution of plants. Journal of Biogeography, 2012, 39, 2132-2145.	1.4	68
61	Biodiversity and Ecosystem Function. Science, 2012, 335, 174-175.	6.0	78
62	Costs of Expanding the Network of Protected Areas as a Response to Climate Change in the Cape Floristic Region. Conservation Biology, 2012, 26, 397-407.	2.4	11
63	Diverse functional responses to drought in a Mediterraneanâ€type shrubland in South Africa. New Phytologist, 2012, 195, 396-407.	3.5	208
64	Do nicheâ€structured plant communities exhibit phylogenetic conservatism? A test case in an endemic clade. Journal of Ecology, 2012, 100, 1434-1439.	1.9	23
65	Cape Floristic Region, South Africa. , 2012, , 80-91.		0
66	Novel methods reveal shifts in migration phenology of barn swallows in South Africa. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1485-1490.	1.2	35
67	Climate Change, Extinction Risk, and Public Policy. , 2012, , 29-38.		1
68	Improving assessment and modelling of climate change impacts on global terrestrial biodiversity. Trends in Ecology and Evolution, 2011, 26, 249-259.	4.2	268
69	Interrogating recent range changes in South African birds: confounding signals from land use and climate change present a challenge for attribution. Diversity and Distributions, 2011, 17, 254-261.	1.9	61
70	Modelling horses for novel climate courses: insights from projecting potential distributions of native and alien Australian acacias with correlative and mechanistic models. Diversity and Distributions, 2011, 17, 978-1000.	1.9	191
71	Effects of Harvesting Flowers from Shrubs on the Persistence and Abundance of Wild Shrub Populations at Multiple Spatial Extents. Conservation Biology, 2011, 25, 73-84.	2.4	17
72	A fundamental, ecoâ€hydrological basis for niche segregation in plant communities. New Phytologist, 2011, 189, 253-258.	3.5	171

#	Article	IF	Citations
73	The ongoing quest for universal patterns of plant function. New Phytologist, 2011, 190, 3-4.	3.5	О
74	Life on the edge: rare and restricted episodes of a panâ€tropical mutualism adapting to drier climates. New Phytologist, 2011, 191, 210-222.	3.5	13
75	Increasing impacts of climate change upon ecosystems with increasing global mean temperature rise. Climatic Change, 2011, 106, 141-177.	1.7	81
76	Potential responses of terrestrial biodiversity in Southern Africa to anthropogenic climate change. Regional Environmental Change, 2011, 11, 127-135.	1.4	51
77	Projecting climate change impacts on species distributions in megadiverse South African Cape and Southwest Australian Floristic Regions: Opportunities and challenges. Austral Ecology, 2010, 35, 374-391.	0.7	86
78	Growth responses of African savanna trees implicate atmospheric [CO ₂] as a driver of past and current changes in savanna tree cover. Austral Ecology, 2010, 35, 451-463.	0.7	190
79	The need to develop a coherent research approach for climate change vulnerability impact assessment and adaptation in highâ€biodiversity terrestrial ecosystems. Austral Ecology, 2010, 35, 371-373.	0.7	4
80	Terrestrial carbon stocks and biodiversity: key knowledge gaps and some policy implications. Current Opinion in Environmental Sustainability, 2010, 2, 264-270.	3.1	44
81	Assessing the impacts of climate change and land transformation on <i>Banksia</i> in the South West Australian Floristic Region. Diversity and Distributions, 2010, 16, 187-201.	1.9	98
82	BioMove – an integrated platform simulating the dynamic response of species to environmental change. Ecography, 2010, 33, 612-616.	2.1	56
83	Beyond bioclimatic envelopes: dynamic species' range and abundance modelling in the context of climatic change. Ecography, 2010, 33, 621-626.	2.1	79
84	Variation in <i>δ</i> ¹³ C among species and sexes in the family Restionaceae along a fineâ€scale hydrological gradient. Austral Ecology, 2010, 35, 818-824.	0.7	14
85	Experimental biogeography: the role of environmental gradients in high geographic diversity in Cape Proteaceae. Oecologia, 2009, 160, 151-162.	0.9	43
86	The impact of shrub encroachment on savanna bird diversity from local to regional scale. Diversity and Distributions, 2009, 15, 948-957.	1.9	91
87	Avian range changes and climate change: a cautionary tale from the Cape Peninsula. Ostrich, 2009, 80, 29-34.	0.4	28
88	PDEAR model prediction of Protea species in years 2070-2100., 2009,,.		1
89	Will Climate Change Promote Alien Plant Invasions?. , 2008, , 197-211.		112
90	Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biology Letters, 2008, 4, 560-563.	1.0	552

#	Article	IF	Citations
91	OPTIMIZING DISPERSAL CORRIDORS FOR THE CAPE PROTEACEAE USING NETWORK FLOW. Ecological Applications, 2008, 18, 1200-1211.	1.8	141
92	Predicting global change impacts on plant species' distributions: Future challenges. Perspectives in Plant Ecology, Evolution and Systematics, 2008, 9, 137-152.	1.1	966
93	Environmental change hastens the demise of the critically endangered riverine rabbit (Bunolagus) Tj ETQq $1\ 1\ 0.7$	84314 rgB 1.9	T /Qverlock 24
94	Future Spatial Pattern of South African Acacia Trees. , 2008, , .		0
95	MACIS: Minimisation of and Adaptation to Climate Change Impacts on Biodiversity. Gaia, 2008, 17, 393-395.	0.3	10
96	Potential vulnerability of Namaqualand plant diversity to anthropogenic climate change. Journal of Arid Environments, 2007, 70, 615-628.	1.2	59
97	Spatial and temporal variation in speciesâ€area relationships in the Fynbos biological hotspot. Ecography, 2007, 30, 852-861.	2.1	11
98	No Forest Left Behind. PLoS Biology, 2007, 5, e216.	2.6	55
99	Colonization and persistence ability explain the extent to which plant species fill their potential range. Global Ecology and Biogeography, 2007, 16, 449-459.	2.7	92
100	A changing climate is eroding the geographical range of the Namib Desert tree <i>Aloe</i> through population declines and dispersal lags. Diversity and Distributions, 2007, 13, 645-653.	1.9	157
101	Protected area needs in a changing climate. Frontiers in Ecology and the Environment, 2007, 5, 131-138.	1.9	630
102	Plant Species Migration as a Key Uncertainty in Predicting Future Impacts of Climate Change on Ecosystems: Progress and Challenges., 2007,, 129-137.		30
103	Colonization and persistence ability explain the extent to which plant species fill their potential range. Global Ecology and Biogeography, 2007, .	2.7	0
104	Predicting patterns of plant species richness in megadiverse South Africa. Ecography, 2006, 29, 733-744.	2.1	96
105	Migration rate limitations on climate change-induced range shifts in Cape Proteaceae. Diversity and Distributions, 2006, 12, 555-562.	1.9	145
106	Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions. Global Change Biology, 2006, 12, 424-440.	4.2	254
107	Endemic species and ecosystem sensitivity to climate change in Namibia. Global Change Biology, 2006, 12, 759-776.	4.2	108
108	Do geographic distribution, niche property and life form explain plants' vulnerability to global change?. Global Change Biology, 2006, 12, 1079-1093.	4.2	229

#	Article	IF	CITATIONS
109	Lethal effects of experimental warming approximating a future climate scenario on southern African quartzâ€field succulents: a pilot study. New Phytologist, 2005, 165, 539-547.	3.5	41
110	The global distribution of ecosystems in a world without fire. New Phytologist, 2005, 165, 525-538.	3.5	1,509
111	Planning for Climate Change: Identifying Minimumâ€Dispersal Corridors for the Cape Proteaceae. Conservation Biology, 2005, 19, 1063-1074.	2.4	261
112	A mechanistic model for secondary seed dispersal by wind and its experimental validation. Journal of Ecology, 2005, 93, 1017-1028.	1.9	122
113	Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology, 2005, 11, 2234-2250.	4.2	742
114	Potential impacts of future land use and climate change on the Red List status of the Proteaceae in the Cape Floristic Region, South Africa. Global Change Biology, 2005, 11, 1452-1468.	4.2	113
115	Climate change and ecology in Africa. African Journal of Ecology, 2005, 43, 167-169.	0.4	27
116	National Climate Change Conference in South Africa. African Journal of Ecology, 2005, 43, 279-281.	0.4	17
117	Long-term effects of elevated atmospheric CO2 on species composition and productivity of a southern African C4 dominated grassland in the vicinity of a CO2 exhalation. Plant Ecology, 2005, 178, 211-224.	0.7	21
118	Forecasting Regional to Global Plant Migration in Response to Climate Change. BioScience, 2005, 55, 749.	2.2	279
119	Identifying priority areas for bioclimatic representation under climate change: a case study for Proteaceae in the Cape Floristic Region, South Africa. Biological Conservation, 2005, 125, 1-9.	1.9	39
120	Specific Leaf Area and Dry Matter Content Estimate Thickness in Laminar Leaves. Annals of Botany, 2005, 96, 1129-1136.	1.4	374
121	The View from the Cape: Extinction Risk, Protected Areas, and Climate Change. BioScience, 2005, 55, 231.	2.2	138
122	Climate change and birds: perspectives and prospects from southern Africa. Ostrich, 2004, 75, 295-308.	0.4	70
123	Photosynthetic and gas exchange characteristics of dominant woody plants on a moisture gradient in an African savanna. Global Change Biology, 2004, 10, 309-317.	4.2	62
124	Effects of atmospheric CO2 concentration and defoliation on the growth of Themeda triandra. Grass and Forage Science, 2004, 59, 215-226.	1.2	6
125	Extinction risk from climate change. Nature, 2004, 427, 145-148.	13.7	5,985
126	Uncertainty in predictions of extinction risk/Effects of changes in climate and land use/Climate change and extinction risk (reply). Nature, 2004, 430, 34-34.	13.7	47

#	Article	IF	CITATIONS
127	RELATING PLANT TRAITS AND SPECIES DISTRIBUTIONS ALONG BIOCLIMATIC GRADIENTS FOR 88 LEUCADENDRON TAXA. Ecology, 2004, 85, 1688-1699.	1.5	242
128	Xylem hydraulics and angiosperm success. , 2004, , 259-271.		4
129	Title is missing!. Plant Ecology, 2003, 169, 179-193.	0.7	22
130	The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Global Change Biology, 2003, 9, 973-982.	4.2	376
131	Developing regional and species-level assessments of climate change impacts on biodiversity in the Cape Floristic Region. Biological Conservation, 2003, 112, 87-97.	1.9	261
132	What controls South African vegetation â€" climate or fire?. South African Journal of Botany, 2003, 69, 79-91.	1.2	293
133	ACKDAT: a digital spatial database of distributions of South African plant species and species assemblages. South African Journal of Botany, 2003, 69, 99-104.	1.2	32
134	Monitoring vegetation: a science in flux?. Journal of Biogeography, 2002, 29, 971-972.	1.4	0
135	Hierarchical processes define spatial pattern of avian assemblages restricted and endemic to the arid Karoo, South Africa. Journal of Biogeography, 2002, 29, 1067-1087.	1.4	26
136	Conservation of Biodiversity in a Changing Climate. Conservation Biology, 2002, 16, 264-268.	2.4	367
137	Climate change-integrated conservation strategies. Global Ecology and Biogeography, 2002, 11, 485-495.	2.7	341
138	Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot. Global Ecology and Biogeography, 2002, 11, 445-451.	2.7	351
139	Growth responses to elevated CO2 in NADP-ME, NAD-ME and PCK C4 grasses and a C3 grass from South Africa. Functional Plant Biology, 2001, 28, 13.	1.1	15
140	Late Tertiary and Quaternary climate change and centres of endemism in the southern African flora., 2001,, 230-242.		11
141	A proposed CO2 -controlled mechanism of woody plant invasion in grasslands and savannas. Global Change Biology, 2000, 6, 865-869.	4.2	422
142	Title is missing!. Plant Ecology, 2000, 150, 115-131.	0.7	37
143	Carry-over of enhanced ultraviolet-B exposure effects to successive generations of a desert annual: interaction with atmospheric CO2 and nutrient supply. Global Change Biology, 1999, 5, 311-329.	4.2	29
144	Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2concentration: a metaâ€analytic test of current theories and perceptions. Global Change Biology, 1999, 5, 723-741.	4.2	553

#	Article	IF	CITATIONS
145	Interactive effects of photon fluence rates and drought on CAM-cycling in Delosperma tradescantioides (Mesembryanthemaceae). Physiologia Plantarum, 1998, 102, 148-154.	2.6	11
146	Photosynthetic responses to CO2 concentration and photon fluence rates in the CAM-cycling plant Delosperma tradescantioides (Mesembryanthemaceae). New Phytologist, 1998, 138, 433-440.	3.5	14
147	Repeated exposure to enhanced UV-B radiation in successive generations increases developmental instability (leaf fluctuating asymmetry) in a desert annual. Plant, Cell and Environment, 1998, 21, 437-442.	2.8	16
148	An ecological economic simulation model of mountain fynbos ecosystems. Ecological Economics, 1997, 22, 155-169.	2.9	97
149	Comparative field performance of three different gas exchange systems. Bothalia, 1997, 27, 83-89.	0.2	13
150	Growth, phenology and reproduction of an arid-environment winter ephemeral Dimorphotheca pluvialis in response to combined increases in CO2 and UV-B radiation. Environmental Pollution, 1996, 94, 247-254.	3.7	12
151	CAM variations in the leaf-succulent Delosperma tradescantioides (Mesembryanthemaceae), native to southern Africa. Physiologia Plantarum, 1996, 98, 485-492.	2.6	13
152	Physiological and growth responses of two African species, Acacia karroo and Themeda triandra, to combined increases in CO2 and UV-B radiation. Physiologia Plantarum, 1996, 98, 882-890.	2.6	30
153	Physiological and growth responses of two African species, Acacia karroo and Themeda triandra, to combined increases in CO2 and UV-B radiation. Physiologia Plantarum, 1996, 98, 882-890.	2.6	2
154	CAM variations in the leaf-succulent Delosperma tradescantioides (Mesembryanthemaceae), native to southern Africa. Physiologia Plantarum, 1996, 98, 485-492.	2.6	0
155	Plant functional diversity, species diversity and climate in arid and semi-arid southern Africa. Journal of Arid Environments, 1994, 27, 141-158.	1.2	93
156	Plant Richness is Negatively Related to Energy Availability in Semi-Arid Southern Africa. Biodiversity Letters, 1994, 2, 35.	0.5	25
157	Gas exchange in arid-adapted shrubs: when is efficient water use a disadvantage?. South African Journal of Botany, 1993, 59, 491-495.	1.2	15
158	Growth and gas exchange responses of Leucadendron xanthoconus (Proteaceae) seedlings to different nutrient and water regimes. South African Journal of Botany, 1992, 58, 56-62.	1.2	5
159	The relative impact of invasive Australian acacias, fire and season on the soil chemical status of a sand plain lowland fynbos community. South African Journal of Botany, 1990, 56, 419-427.	1.2	30
160	Substrate effects of zoogenic soil mounds on vegetation composition in the Worcester – Robertson valley, Cape Province. South African Journal of Botany, 1990, 56, 158-166.	1.2	51
161	Effects of disturbance by fire and tillage on the water relations of selected mountain fynbos species. South African Journal of Botany, 1990, 56, 199-205.	1.2	12
162	How Climate Extremes Influence Conceptual Rainfall-Runoff Model Performance and Uncertainty. Frontiers in Climate, 0, 4, .	1.3	4