Sai T Chu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1563608/publications.pdf

Version: 2024-02-01

24915 20759 13,989 360 60 109 citations h-index g-index papers 363 363 363 6934 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ultralarge anti-Stokes lasing through tandem upconversion. Nature Communications, 2022, 13, 1032.	5. 8	51
2	Telecom-compatible, on-chip generation and processing of complex photon states in time and frequency. , 2022, , .		0
3	Optical Neuromorphic Processor at 11 TeraOPs/s based on Kerr Soliton Crystal Micro-combs. , 2022, , .		1
4	Highly Versatile Broadband RF Photonic Fractional Hilbert Transformer Based on a Kerr Soliton Crystal Microcomb. Journal of Lightwave Technology, 2021, 39, 7581-7587.	2.7	21
5	Thermal Analysis of Visible Emission From Micro-Ring Resonators by Third-Harmonic Generation. IEEE Photonics Technology Letters, 2021, 33, 235-238.	1.3	1
6	All-optical RF spectrum analyzer with a 5 THz bandwidth based on CMOS-compatible high-index doped silica waveguides. Optics Letters, 2021, 46, 1574.	1.7	6
7	Four-wave mixing in silicon-nanocrystal embedded high-index doped silica micro-ring resonator. Journal of Semiconductors, 2021, 42, 042302.	2.0	1
8	Orthogonally polarized RF optical single sideband generation with integrated ring resonators. Journal of Semiconductors, 2021, 42, 041305.	2.0	17
9	Photonic radio frequency channelizers based on Kerr optical micro-combs. Journal of Semiconductors, 2021, 42, 041302.	2.0	28
10	Synthesized soliton crystals. Nature Communications, 2021, 12, 3179.	5 . 8	77
11	Arbitrary Phase Access for Stable Fiber Interferometers. Laser and Photonics Reviews, 2021, 15, 2000524.	4.4	9
12	Emergence of Laser Cavity-Solitons in a Microresonator-Filtered Fiber Laser. , 2021, , .		0
13	Neuromorphic processing at 11 Tera-OPs with soliton crystal Kerr microcombs., 2021,,.		1
14	Autonomous on-chip interferometry for reconfigurable optical waveform generation. Optica, 2021, 8, 1268.	4.8	22
15	Soliton Burst and Biâ€Directional Switching in the Platform with Positive Thermalâ€Refractive Coefficient Using an Auxiliary Laser. Laser and Photonics Reviews, 2021, 15, 2100264.	4.4	16
16	Emergence of Laser Cavity-Solitons in a Microresonator-Filtered Fiber Laser. , 2021, , .		0
17	11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 2021, 589, 44-51.	13.7	550
18	Fiber Interferometers for Time-domain Quantum Optics., 2021,,.		0

#	Article	IF	Citations
19	Program-controlled single soliton microcomb source. Photonics Research, 2021, 9, 66.	3.4	27
20	Self-locked optical parametric oscillation in a highly doped silica glass slot ring resonator. , 2021, , .		O
21	Real-Time Study of Coexisting States in Laser Cavity Solitons. , 2021, , .		0
22	Spontaneous Emergence of Microresonator Laser Cavity- Solitons. , 2021, , .		0
23	High-Index Doped Silica Glass Planar Lightwave Circuits. , 2021, , .		2
24	On-chip time and frequency modes for the generation and processing of complex photon states. , 2021, , .		0
25	Photonic convolutional accelerator and neural network in the Tera-OPs regime based on soliton crystal Kerr microcombs. , 2021, , .		1
26	Tera-OP/s Neuromorphic Processing with Kerr Microcombs. , 2021, , .		1
27	Broadband Microwave Frequency Conversion Based on an Integrated Optical Micro-Comb Source. Journal of Lightwave Technology, 2020, 38, 332-338.	2.7	67
28	Photonic RF Phase-Encoded Signal Generation With a Microcomb Source. Journal of Lightwave Technology, 2020, 38, 1722-1727.	2.7	55
29	Induced Photon Correlations Through the Overlap of Two Fourâ€Wave Mixing Processes in Integrated Cavities. Laser and Photonics Reviews, 2020, 14, 2000128.	4.4	18
30	Photonic Perceptron Based on a Kerr Microcomb for Highâ€Speed, Scalable, Optical Neural Networks. Laser and Photonics Reviews, 2020, 14, 2000070.	4.4	84
31	Photonic RF Arbitrary Waveform Generator Based on a Soliton Crystal Micro-Comb Source. Journal of Lightwave Technology, 2020, 38, 6221-6226.	2.7	62
32	Photonic RF and Microwave Integrator Based on a Transversal Filter With Soliton Crystal Microcombs. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 3582-3586.	2.2	23
33	Designing Time and Frequency Entanglement for Generation of High-Dimensional Photon Cluster States. , 2020, , .		0
34	Broadband Photonic RF Channelizer With 92 Channels Based on a Soliton Crystal Microcomb. Journal of Lightwave Technology, 2020, 38, 5116-5121.	2.7	38
35	Optical multi-stability in a nonlinear high-order microring resonator filter. APL Photonics, 2020, 5, .	3.0	13
36	Broadband generation of photon-pairs from a CMOS compatible device. Applied Physics Letters, 2020, 116, .	1.5	10

#	Article	IF	Citations
37	2D Layered Graphene Oxide Films Integrated with Microâ€Ring Resonators for Enhanced Nonlinear Optics. Small, 2020, 16, e1906563.	5.2	7 5
38	Optical Trapping and Manipulating with a Silica Microring Resonator in a Self-Locked Scheme. Micromachines, 2020, 11, 202.	1.4	13
39	RF and Microwave Fractional Differentiator Based on Photonics. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 2767-2771.	2.2	44
40	Quantum Key Distribution with Onâ€Chip Dissipative Kerr Soliton. Laser and Photonics Reviews, 2020, 14, 1900190.	4.4	44
41	Ultra-dense optical data transmission over standard fibre with a single chip source. Nature Communications, 2020, 11, 2568.	5.8	192
42	Turing patterns in a fiber laser with a nested microresonator: Robust and controllable microcomb generation. Physical Review Research, 2020, 2, .	1.3	42
43	Third-harmonic generation in CMOS-compatible highly doped silica micro-ring resonator. Optics Express, 2020, 28, 641.	1.7	10
44	Frequency comb swept laser with a high-Q microring filter. Photonics Research, 2020, 8, 904.	3.4	11
45	Long-distance ranging with high precision using a soliton microcomb. Photonics Research, 2020, 8, 1964.	3.4	72
46	Enhanced four-wave mixing in micro-ring resonators integrated with layered graphene oxide films. , 2020, , .		0
47	Unambiguous Phase Retrieval in Fiber-based Interferometers. , 2020, , .		0
48	Distinct Laser Dynamics from a Single Figure-Eight Laser with an Integrated Nonlinear Waveguide. , 2020, , .		0
49	Photon correlation control in integrated quantum frequency combs. , 2020, , .		0
50	Photonic RF fractional Hilbert transformers and filters based on integrated soliton crystal microcombs. , 2020, , .		1
51	Broadband RF channelization using microcombs. , 2020, , .		0
52	Kerr Micro-combs for Radio Frequency Photonics -INVITED. EPJ Web of Conferences, 2020, 238, 01004.	0.1	0
53	Optical frequency comb generation by hybrid mode-locking in a nested cavity scheme. , 2020, , .		0
54	Enhanced four-wave mixing in micro-ring resonators with integrated 2D layered graphene oxide films. , 2020, , .		1

#	Article	IF	CITATIONS
55	Induced Photon Correlations by the Superposition of Two Four-Wave Mixing Processes on a Photonic Chip. , 2020, , .		0
56	Mieroeombs Eased on Laser Cavity Solitons. , 2020, , .		0
57	Integrated polarizers based on graphene oxide in waveguides and ring resonators. , 2020, , .		6
58	Laser Cavity Solitons and Turing Patterns in Microresonator Filtered Lasers. , 2020, , .		0
59	Graphene Oxide Waveguide and Microâ€Ring Resonator Polarizers. Laser and Photonics Reviews, 2019, 13, 1900056.	4.4	66
60	On-chip Generation, Coherent Control and Processing of Complex Entangled Photon States. , 2019, , .		0
61	Microwave and RF Photonic Fractional Hilbert Transformer Based on a 50 GHz Kerr Micro-Comb. Journal of Lightwave Technology, 2019, 37, 6097-6104.	2.7	61
62	Third Harmonic Generation in Highly-Doped Silica Glass Micro Ring Resonator. , 2019, , .		0
63	Customizing Supercontinuum Generation Via Adaptive On-Chip Pulse Splitting. , 2019, , .		0
64	Hyper-Entanglement in Time and Frequency. , 2019, , .		0
65	Integrating temporal and spatial control of electronic transitions for bright multiphoton upconversion. Nature Communications, 2019, 10, 1811.	5.8	104
66	An on-chip photon-pair source with negligible two photon absorption. Applied Physics Express, 2019, 12, 022006.	1.1	5
67	Laser cavity-soliton microcombs. Nature Photonics, 2019, 13, 384-389.	15.6	169
68	Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator. AIP Advances, 2019, 9, .	0.6	62
69	High performance RF filters via bandwidth scaling with Kerr micro-combs. APL Photonics, 2019, 4, 026102.	3.0	93
70	Kerr Combs and Telecommunications Components for the Generation and High-Dimensional Quantum Processing of d-Level Cluster States. , 2019, , .		0
71	Reconfigurable photonic RF filters based on integrated Kerr frequency comb sources. , 2019, , .		1
72	Reconfigurable fractional microwave signal processor based on a microcomb. , 2019, , .		1

#	Article	IF	CITATIONS
73	Complex Quantum State Generation and Coherent Control Based on Integrated Frequency Combs. Journal of Lightwave Technology, 2019, 37, 338-344.	2.7	20
74	Advanced Adaptive Photonic RF Filters with 80 Taps Based on an Integrated Optical Micro-Comb Source. Journal of Lightwave Technology, 2019, 37, 1288-1295.	2.7	104
75	High-dimensional one-way quantum processing implemented on d-level cluster states. Nature Physics, 2019, 15, 148-153.	6.5	204
76	Broadband photonic RF channelizer based on micro-combs., 2019,,.		2
77	Highly reconfigurable hybrid laser based on an integrated nonlinear waveguide. Optics Express, 2019, 27, 25251.	1.7	8
78	CMOS-compatible high-index doped silica waveguide with an embedded silicon-nanocrystal strip for all-optical analog-to-digital conversion. Photonics Research, 2019, 7, 1200.	3.4	17
79	Microcomb-based photonic local oscillator for broadband microwave frequency conversion., 2019,,.		2
80	Microcomb-based RF transversal filters. , 2019, , .		1
81	Broadband Local Oscillator Free Photonic Microwave Mixer based on a Coherent Kerr Micro-Comb Source., 2019,,.		1
82	Layered Graphene Oxide Films for Enhanced Nonlinear Optics in Integrated Waveguides. , 2019, , .		0
83	High-dimensional one-way quantum computation operations with on-chip optical d-level cluster states. , 2019, , .		0
84	Tunable Photonic RF Bandpass Filters based on an 80 Channel Kerr Micro-Comb Source., 2019,,.		1
85	Orthogonally polarized optical single sideband generation based on integrated microring resonators. , 2019, , .		1
86	Applications of Kerr Micro-combs to RF Photonics. , 2019, , .		1
87	Microwave and Communications Applications of Microcombs. , 2019, , .		1
88	Graphene oxide for enhanced nonlinear optics in integrated waveguides. , 2019, , .		0
89	Discrete Fourier domain mode locked laser with a microring resonator. , 2019, , .		0
90	Enhanced four-wave mixing in hybrid integrated waveguides with graphene oxide. , 2019, , .		0

#	Article	lF	Citations
91	Reconfigurable microwave photonic transversal filter based on an integrated optical micro-comb source. , 2019, , .		2
92	High-performance microwave photonic true time delays based on an integrated optical micro-comb source. , 2019, , .		1
93	Broadband photonic RF channelization based on an integrated optical micro-comb source. , 2019, , .		O
94	Reconfigurable microwave signal processor for fractional and regular Hilbert transform based on a microcomb. , 2019, , .		1
95	True time delays for phased array antennas based on a microcomb. , 2019, , .		1
96	Continuously tunable orthogonally polarized RF optical single sideband generator based on cascaded micro-ring resonators. , $2019, , .$		1
97	Photonic wideband RF mixer based on an integrated microcomb source. , 2019, , .		1
98	Graphene oxide waveguide and micro-ring resonator polarizers. , 2019, , .		0
99	High Q RF transversal filter based on an 80-channel integrated microcomb source. , 2019, , .		1
100	Enhanced Kerr optical nonlinearity of integrated waveguides incorporating layered GO films. , 2019, , .		0
101	Broadband RF Channelizer Based on an Integrated Optical Frequency Kerr Comb Source. Journal of Lightwave Technology, 2018, 36, 4519-4526.	2.7	114
102	RF Photonics: An Optical Microcombs' Perspective. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-20.	1.9	128
103	Robust controllable FD-FWM based Micro-combs. , 2018, , .		O
104	An actively mode-locked laser based on a 5 th order micro-ring resonator., 2018,,.		0
105	Customizing supercontinuum generation via on-chip adaptive temporal pulse-splitting. Nature Communications, 2018, 9, 4884.	5 . 8	59
106	Invited Article: Enhanced four-wave mixing in waveguides integrated with graphene oxide. APL Photonics, 2018, 3, .	3.0	114
107	Continuously tunable orthogonally polarized RF optical single sideband generator based on micro-ring resonators. Journal of Optics (United Kingdom), 2018, 20, 115701.	1.0	60
108	Figure-eight Laser with an Integrated Nonlinear Waveguide: All-optical Square-wave Generation. , 2018, , .		0

#	Article	IF	CITATIONS
109	Raman self-frequency-shift of soliton crystal in a high index doped silica micro-ring resonator [Invited]. Optical Materials Express, 2018, 8, 2662.	1.6	21
110	Generation and coherent manipulation of complex quantum states based on integrated frequency combs. , $2018,$, .		0
111	On-chip frequency combs and telecommunications signal processing meet quantum optics. Frontiers of Optoelectronics, 2018, 11, 134-147.	1.9	4
112	Self-locked orthogonal polarized dual comb in a microresonator. Photonics Research, 2018, 6, 363.	3.4	25
113	Photonic microwave true time delays for phased array antennas using a 49  GHz FSR integrated optical micro-comb source [Invited]. Photonics Research, 2018, 6, B30.	3.4	119
114	Type-II micro-comb generation in a filter-driven four wave mixing laser [Invited]. Photonics Research, 2018, 6, B67.	3.4	33
115	Advanced RF and microwave functions based on an integrated optical frequency comb source. Optics Express, 2018, 26, 2569.	1.7	128
116	Robust soliton crystals in a thermally controlled microresonator. Optics Letters, 2018, 43, 2002.	1.7	100
117	Noise Contributions in On-Chip Four-Photon States. , 2018, , .		0
118	Orthogonally Polarized RF Optical Single Sideband Generation and Dual-Channel Equalization Based on an Integrated Microring Resonator. Journal of Lightwave Technology, 2018, 36, 4808-4818.	2.7	75
119	Generation and Coherent Control of Pulsed Quantum Frequency Combs. Journal of Visualized Experiments, 2018, , .	0.2	0
120	Reconfigurable microwave photonic transversal filter based on an integrated Kerr comb., 2018,,.		0
121	Framework for complex quantum state generation and coherent control based on on-chip frequency combs. , 2018, , .		0
122	On-chip entangled D-level photon states – scalable generation and coherent processing. , 2018, , .		0
123	Integrated Kerr optical frequency comb-based broadband RF channelizer. , 2018, , .		O
124	Scalable on-chip generation and coherent control of complex optical quantum states. , 2018, , .		0
125	Supercontinuum Generation in an Amorphous Silicon Strip-loaded Dielectric Waveguide. , 2018, , .		0
126	Integrated Optical Power Equalizer Based on a Dual-Polarization Micro-Ring Resonator., 2018,,.		0

#	Article	IF	Citations
127	Integrated Kerr comb-based reconfigurable transversal differentiator for microwave photonic signal processing. , $2018, \ldots$		0
128	Dynamics of laser with an integrated nonlinear waveguide. , 2018, , .		0
129	Enhanced four-wave mixing in graphene oxide coated waveguides. , 2018, , .		0
130	Tunable Spatiotemporal Soliton Generation in Serially Coupled Dual Micro-Ring Resonators., 2018,,.		1
131	Microwave and RF Photonic Applications of Integrated Kerr Micro-Combs. , 2018, , .		0
132	High-Order Microwave Photonic Intensity Differentiator Based on CMOS-Compatible Micro-Combs. , 2018, , .		0
133	On-chip quantum optical frequency comb sources. , 2018, , .		0
134	A Highly Versatile Microwave Photonic Filter Based on an Integrated Optical Frequency Comb Source. , 2018, , .		1
135	Integrated Kerr micro-comb sources for photonic microwave applications. , 2018, , .		2
136	Passively mode-locked laser with an ultra-narrow spectral width. Nature Photonics, 2017, 11, 159-162.	15.6	111
137	Repetition Rate Multiplication Pulsed Laser Source Based on a Microring Resonator. ACS Photonics, 2017, 4, 1677-1683.	3.2	32
138	Wavelength conversion of QAM signals in a low loss CMOS compatible spiral waveguide. APL Photonics, 2017, 2, 046105.	3.0	17
139	Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source. APL Photonics, 2017, 2, .	3.0	103
140	Generation of complex quantum states via integrated frequency combs., 2017,,.		0
141	On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 2017, 546, 622-626.	13.7	574
142	Frequency comb assisted characterisation of a filter-driven four wave mixing laser., 2017,,.		0
143	Microwave and RF applications of micro-combs. , 2017, , .		0
144	Optical trapping with microring resonator in a self-locked scheme. , 2017, , .		0

#	Article	IF	CITATIONS
145	Photonic microwave and RF signal processing based on optical micro-combs., 2017,,.		O
146	Type II microcomb generation in a filter-driven four wave mixing laser., 2017,,.		O
147	Four-wave mixing photon pair generation statistics for a nonlinear microcavity with chaotic and pulsed excitation. , 2017, , .		0
148	Reconfigurable microwave photonic differentiator based on an integrated Kerr frequency comb source. , 2017, , .		0
149	Dynamically unstable regimes and chaos control through Four Wave Mixing in Ring Microresonators. , 2017, , .		1
150	Practical system for the generation of pulsed quantum frequency combs. Optics Express, 2017, 25, 18940.	1.7	69
151	Multichannel phase-sensitive amplification in a low-loss CMOS-compatible spiral waveguide. Optics Letters, 2017, 42, 4391.	1.7	4
152	A passively mode-locked nanosecond laser with an ultra-narrow spectral width. , 2017, , .		0
153	Demonstration of on-chip multi-mode phase-sensitive amplification. , 2017, , .		0
154	Novel frontiers in the stabilization of FD-FWM microcombs. , 2017, , .		0
155	On-chip quantum state generation by means of integrated frequency combs., 2017,,.		O
156	An iterative method for the dynamic modeling of ultra-short pulse generation in nonlinear optical ring resonator. , 2017, , .		0
157	Thermal instability control by four wave mixing in optical microcavities. , 2017, , .		O
158	Pulsed quantum frequency combs from an actively mode-locked intra-cavity generation scheme. , 2017, , .		0
159	Repetition rate controllable filter-driven four wave mixing laser. , 2017, , .		1
160	Integrated Kerr Comb-based Reconfigurable Transversal Differentiator for Microwave Photonic Signal Processing. , 2017, , .		1
161	Parametric control of thermal self-pulsation in micro-cavities. Optics Letters, 2017, 42, 3407.	1.7	34
162	Entanglement generation with integrated optical frequency comb sources. , 2017, , .		0

#	Article	IF	Citations
163	Optical intensity square root differentiator based on an integrated Kerr frequency comb source., 2017,,.		O
164	Integrated generation of high-dimensional entangled photon states and their coherent control. , 2017, , .		0
165	An ultra-narrow spectral width passively mode-locked laser. , 2017, , .		1
166	Filter-Driven Four Wave Mixing Laser with a Controllable Repetition Rate., 2017,,.		0
167	Pulsed Quantum Frequency Combs from an Actively Mode-Locked Intra-Cavity Generation Scheme. , 2017, , .		O
168	Four-Wave Mixing Photon Pair Generation Statistics for a Nonlinear Microcavity with Chaotic and Pulsed Excitation., 2017,,.		0
169	Multi-Channel Phase-Sensitive Amplification in Nonlinear Waveguides. , 2017, , .		O
170	Type II Micro-comb based on a Filter-Driven Four Wave Mixing Laser. , 2017, , .		0
171	On-chip Generation of Four-Photon Entangled Qubit States. , 2016, , .		O
172	Dual-pump Kerr Micro-cavity Optical Frequency Comb with varying FSR spacing. Scientific Reports, 2016, 6, 28501.	1.6	57
173	Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated Quantum Frequency Combs. Nanophotonics, 2016, 5, 351-362.	2.9	70
174	Design and Fabrication of a Broadband Millimeter Wave Rectangular-Metallic to Dielectric Rod-Waveguide Adaptor. IEEE Transactions on Terahertz Science and Technology, 2016, , 1-7.	2.0	1
175	Metasurface-loaded waveguide for transformation optics applications. Journal of Optics (United) Tj ETQq1 1 0.784	1.0 rgBT	/Overlock
176	Microwave and RF applications for micro-resonator based frequency combs. Proceedings of SPIE, 2016,	0.8	0
177	Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science, 2016, 351, 1176-1180.	6.0	371
178	Wavelike charge density fluctuations and van der Waals interactions at the nanoscale. Science, 2016, 351, 1171-1176.	6.0	217
179	Novel ultrafast sources on chip: filter driven four wave mixing lasers, from high repetition rate to burst mode operation. , 2016 , , .		1
180	Multi-correlated Two-Photon States from a Bi-Modal Integrated Frequency Comb Source., 2016,,.		0

#	Article	IF	CITATIONS
181	Generation of multi-photon entangled states with integrated optical frequency comb sources. , 2016, , .		2
182	Temporal Hilbert Transform Based on an Integrated Frequency Comb Source., 2016,,.		0
183	On-Chip Frequency Comb of Entangled Qubits. , 2016, , .		0
184	Four-Photon Entanglement Generation with Integrated Optical Frequency Combs. , 2016, , .		0
185	Micro-Resonator Frequency Comb Source based Time Domain Hilbert Transform., 2016, , .		0
186	Generation of Multiple Entangled Qubits from an Integrated Frequency Comb Source., 2016,,.		0
187	Integrated Quantum Frequency Comb Source of Entangled Qubits. , 2016, , .		0
188	Low-penalty up to 16-QAM wavelength conversion in a low loss CMOS compatible spiral waveguide. , 2016, , .		1
189	Four Mode Multi-correlated Bi-Photon States within an Integrated Quantum Frequency Comb. , 2016, , .		0
190	Wavelength Conversion of QPSK and 16-QAM Coherent Signals in a CMOS Compatible Spiral Waveguide. , 2016, , .		0
191	High-Extinction-Ratio Multi-Wavelength Optical Source Based on an On-Chip Nonlinear Micro-Ring Resonator. , 2016, , .		0
192	Multi-photon Entangled Quantum State from Integrated Optical Frequency Combs., 2016,,.		0
193	Two-Photon Multi-Correlated States from an On-Chip Bi-Modal Micro-Cavity. , 2016, , .		0
194	Phase-Sensitive Amplification with Net Gain in Low-Loss Integrated Waveguides. , 2016, , .		0
195	Nanosecond passively mode-locked laser with a hundred megahertz spectral bandwidth. , 2016, , .		0
196	Quantum photonic circuits for optical signal processing., 2015,,.		0
197	Ultra-low power passive mode-locking using an integrated nonlinear microring resonator. , 2015, , .		O
198	Four wave mixing in 5 th order cascaded CMOS compatible ring resonators. , 2015, , .		0

#	Article	lF	CITATIONS
199	An acoustic beam shifter with enhanced transmission using perforated metamaterials. Europhysics Letters, 2015, 109, 14004.	0.7	11
200	Parity-time symmetry from stacking purely dielectric and magnetic slabs. Physical Review A, 2015, 91, .	1.0	45
201	Insight into the electrochemical activation of carbon-based cathodes for hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 13080-13086.	5.2	198
202	Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip. Nature Communications, 2015, 6, 8236.	5.8	110
203	Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis. Optics Express, 2015, 23, 22087.	1.7	100
204	Passive mode-locking of transform-limited hundred-ps long pulses using an integrated nonlinear microring resonator. , 2015, , .		0
205	Multi-Correlated Two-Photon States within an Integrated Quantum Frequency Comb., 2015,,.		0
206	Four Wave Mixing in 5th Order Cascaded CMOS Compatible Ring Resonators. , 2015, , .		0
207	Burst-mode operation of a 655GHz mode locked laser based on an 11-th order microring resonator. , 2015, , .		0
208	Four Wave Mixing in a CMOS Compatible 5th Order Cascaded Ring Resonators. , 2015, , .		1
209	Passive Mode-Locking at $1.8\hat{l}$ ¼m using a High-Order Microring Resonator in a Figure-Eight Fiber Laser. , 2015, , .		0
210	Integrated bi-chromatically pumped optical parametric oscillator for orthogonally polarized photon pair generation. , 2015, , .		0
211	Integrated Frequency Comb of Time-Bin Entangled Photon Pairs. , 2015, , .		0
212	Quadrature Hybrid RF Photonic Coupler Using an Integrated Frequency Comb Source., 2015,,.		1
213	Direct Generation of Orthogonally Polarized Photon Pairs on a Chip via Spontaneous Non-Degenerate FWM. , 2014, , .		0
214	Integrated frequency comb source of heralded single photons. Optics Express, 2014, 22, 6535.	1.7	187
215	CMOS compatible integrated all-optical radio frequency spectrum analyzer. Optics Express, 2014, 22, 21488.	1.7	60
216	Symmetrical and anti-symmetrical coherent perfect absorption for acoustic waves. Applied Physics Letters, 2014, 104, .	1.5	120

#	Article	IF	Citations
217	Integrated Source of Multiplexed Heralded Photons. , 2014, , .		O
218	Characterization of ultra-high repetition rate mode-locked lasers with an integrated all-optical RF spectrum analyzer. , 2014, , .		1
219	Integrated Source of Multiplexed Photon Pairs. , 2014, , .		0
220	Direct Generation of Orthogonally Polarized Photon Pairs via Spontaneous Non-Degenerate FWM on a Chip. , 2014, , .		2
221	Orthogonally polarized correlated photon pair generation on a chip via self-pumped spontaneous non-degenerate FWM. , 2014, , .		0
222	Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip. Optics Express, 2013, 21, 13333.	1.7	128
223	Filter-driven four wave mixing dual-mode mode-locked laser based on an integrated nonlinear microring resonator., 2013,,.		0
224	Theoretical and experimental development of a broadband sub-millimeter wave rectangular-metallic to dielectric rod-waveguide adaptor. , $2013, \ldots$		0
225	A low cost dielectric waveguide platform for sub-mm/THz applications. , 2013, , .		1
226	Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator. Optics Express, 2012, 20, 27355.	1.7	108
227	Portable frequency combs for optical frequency metrology. Optics Express, 2012, 20, 16671.	1.7	22
228	Demonstration of a stable ultrafast laser based on a nonlinear microcavity. Nature Communications, 2012, 3, 765.	5.8	253
229	Stable Dual Mode High Repetition Rate Mode-Locked Laser Based on an Integrated Nonlinear Microring Resonator. , 2012, , .		1
230	Self-locked low threshold OPO in a CMOS-compatible microring resonator. , 2012, , .		0
231	Towards Ultrafast Integrated Optical Clocks. Optics and Photonics News, 2012, 23, 54.	0.4	0
232	Dual mode mode-locked laser based on an integrated nonlinear microring resonator. , 2012, , .		0
233	Simultaneous enhanced photon capture and carrier generation in Si solar cells using Ge quantum dot photonic nanocrystals. Nanotechnology, 2012, 23, 185401.	1.3	36
234	Time-Lens Measurement of Subpicosecond Optical Pulses in CMOS Compatible High-Index Glass Waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 629-636.	1.9	24

#	Article	IF	CITATIONS
235	CMOS Compatible Monolithic 1st and 2nd Order All-Optical Integrator., 2012, , .		1
236	Double comb generated by a mode-locked laser based on an integrated nonlinear microring resonator. , 2012, , .		0
237	Mode-locked laser based on an integrated nonlinear microring resonator generating a dual comb , 2012, , .		1
238	A self-locking scheme for robust parametric oscillation in CMOS-compatible microring resonators. , 2012, , .		0
239	Self-locked OPO in CMOS-compatible microring resonators. , 2012, , .		0
240	Novel Ultrafast Integrated Sources based on Nonlinear Frequency Conversion. , 2012, , .		0
241	Parametric oscillation in CMOS-compatible microring resonators induced with a self-locking scheme. , 2012, , .		0
242	Advanced Integrated Photonics in Doped Silica Glass. Springer Series in Optical Sciences, 2012, , 47-92.	0.5	1
243	Measurement of high time-bandwidth pulses on a chip with a phase sensitive optical oscilloscope. , 2011, , .		0
244	Highly stable 200GHz soliton microring resonator laser based on filter-driven four wave mixing. , 2011, , .		0
245	Monolithic CMOS compatible 1 st and 2 nd order 400GHz all-optical integrator., 2011,,.		1
246	All-optical 1st and 2nd order integration on a chip. Optics Express, 2011, 19, 23153.	1.7	65
247	Sub-picosecond phase-sensitive optical pulse characterization on a chip. Nature Photonics, 2011, 5, 618-623.	15.6	124
248	SPIDER on-chip: a subpicosecond phase sensitive optical oscilloscope., 2011,,.		0
249	Highly Stable 200GHz Soliton Microring Resonator Laser based on Filter-Driven Four Wave Mixing. , 2011, , .		1
250	CMOS compatible waveguides for all-optical signal processing. , 2011, , .		2
251	Sub-ps Laser Based on a CMOS Compatible Integrated Microring Resonator., 2011,,.		0
252	SPIDER on a chip: a phase sensitive ultrafast oscilloscope. , 2011, , .		0

#	Article	IF	CITATIONS
253	Novel Functionalities and Devices Based on Non-linear Frequency Conversion in Low Loss, CMOS Compatible Integrated Waveguide Structures., 2011,,.		O
254	Sub-ps laser modelocked dissipative soliton laser in a CMOS compatible integrated microring resonator. , 2010, , .		0
255	Nonlinear pulse processing in High Index Glass Integrated devices: pulse compression. , 2010, , .		0
256	Supercontinuum Generation in an Integrated High-Index Glass Spiral Waveguide. , 2010, , .		0
257	Ultra-Fast Integrated All-Optical Integrator. , 2010, , .		5
258	Subpicosecond 200GHz soliton laser based on a C-MOS compatible integrated microring resonator. , 2010, , .		1
259	CMOS-compatible integrated optical hyper-parametric oscillator. Nature Photonics, 2010, 4, 41-45.	15.6	519
260	All-optical wavelength conversion in an integrated ring resonator. Optics Express, 2010, 18, 3858.	1.7	115
261	Subpicosecond optical pulse compression via an integrated nonlinear chirper. Optics Express, 2010, 18, 7625.	1.7	101
262	Efficient wavelength conversion and net parametric gain via Four Wave Mixing in a high index doped silica waveguide. Optics Express, 2010, 18, 7634.	1.7	110
263	CMOS-Compatible Integrated Multiple Wavelength Laser. Optics and Photonics News, 2010, 21, 36.	0.4	1
264	Supercontinuum generation in a high index doped silica glass spiral waveguide. Optics Express, 2010, 18, 923.	1.7	127
265	On-chip CMOS-compatible all-optical integrator. Nature Communications, 2010, 1, 29.	5.8	220
266	Subpicosecond Ultra High Speed Soliton Laser based on a C-MOS Compatible Integrated Microring Resonator. , 2010, , .		1
267	High Performance, Low-loss Nonlinear Integrated Glass Waveguides. Progress in Electromagnetics Research Symposium: [proceedings] Progress in Electromagnetics Research Symposium, 2010, 6, 283-286.	0.4	3
268	Efficient wavelength conversion and net parametric gain via FWM in a high index doped silica waveguide. , $2010, , .$		1
269	Ultra-low Power Frequency Conversion in Two-photon-absorption Free Micro Ring Resonator. Progress in Electromagnetics Research Symposium: [proceedings] Progress in Electromagnetics Research Symposium, 2010, 6, 279-282.	0.4	0
270	Net Parametric Gain in a High Index Doped Silica Waveguide., 2010,,.		0

#	Article	IF	CITATIONS
271	Ultrafast Optical Pulse Compression on a Chip. , 2010, , .		O
272	Time lens for Sub-picosecond Optical Pulse Measurement on a Chip. , 2010, , .		0
273	Dissipative Four Wave Mixing Sub-ps Laser Based on a CMOS Compatible Integrated Microring Resonator., 2010,,.		0
274	Ultra-Fast On-Chip All-Optical Integration. , 2010, , .		1
275	All optical wavelength conversion in an integrated ring resonator. , 2010, , .		0
276	Ultra High Speed Soliton Laser Based on a C-MOS Compatible Integrated Microring Resonator. , 2010, , .		1
277	Time-lens for Sub-picosecond Optical Pulse Measurement on a Chip. , 2010, , .		0
278	Temporal pulse compression in low dispersion Hydex® glass integrated waveguides., 2009,,.		0
279	Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides. Optics Express, 2009, 17, 1865.	1.7	112
280	Low power four wave mixing in an integrated, micro-ring resonator with $Q=12$ million. Optics Express, 2009, 17, 14098.	1.7	123
281	Low power parametric wave-mixing in a zero dispersive CMOS compatible micro-ring resonator. , 2009, , .		0
282	Advanced photonic integration and high-index-contrast circuit., 2009,,.		0
283	Temporal Pulse Compression in High-Index Doped Silica Glass Integrated Waveguides. , 2009, , .		0
284	A universal biosensing platform based on optical micro-ring resonators. Biosensors and Bioelectronics, 2008, 23, 939-944.	5. 3	205
285	Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nature Photonics, 2008, 2, 737-740.	15.6	328
286	Continuously Tunable, Wavelength-Selective Buffering in Optical Packet Switching Networks. IEEE Photonics Technology Letters, 2008, 20, 1030-1032.	1.3	28
287	Continuously Tunable Optical Buffering at 40 Gb/s for Optical Packet Switching Networks. Journal of Lightwave Technology, 2008, 26, 3776-3783.	2.7	32
288	All-optical variable buffering in optical packet switching networks. , 2008, , .		1

#	Article	IF	Citations
289	Ultra-low power CW λ-conversion in silica glass micro-ring resonators., 2008,,.		O
290	Variable Slowlight Buffers in All-Optical Packet Switching Routers., 2008,,.		3
291	Tunable bandwidth microring resonator filters. , 2008, , .		4
292	Integrated polarimeter assisted ring scanning spectrometer. , 2008, , .		0
293	Ultra-low CW power wavelength conversion in high-index glass micro ring resonators. , 2008, , .		0
294	Large-scale high-index-contrast planar lightwave circuits. , 2008, , .		0
295	Advanced Ring Resonator Based PLCs. , 2006, , .		0
296	Fully programmable ring-resonator-based integrated photonic circuit for phase coherent applications. Journal of Lightwave Technology, 2006, 24, 77-87.	2.7	99
297	Optical sensing of biomolecules using microring resonators. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 148-155.	1.9	330
298	Ultra-compact low loss array waveguide grating. , 2006, , .		0
299	High index contrast photonics platform. , 2005, 6014, 110.		1
300	Very High-Order Microring Resonator Filters for WDM Applications. IEEE Photonics Technology Letters, 2004, 16, 2263-2265.	1.3	418
301	OPTICAL RESONATORS AND FILTERS. Advanced Series in Applied Physics, 2004, , 1-37.	0.0	11
302	Vertical Triple Series-Coupled Microring Resonator Filter for Passband Flattening and Expansion of Free Spectral Range. Japanese Journal of Applied Physics, 2002, 41, L141-L143.	0.8	16
303	Coupling-loss reduction of a vertically coupled microring resonator filter by spot-size-matched busline waveguides. Applied Optics, 2002, 41, 4394.	2.1	6
304	Precise control of wavelength channel spacing of microring resonator add-drop filter array. Journal of Lightwave Technology, 2002, 20, 745-750.	2.7	51
305	Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter. Journal of Lightwave Technology, 2002, 20, 1525-1529.	2.7	140
306	Ultrashort optical pulse transmission characteristics of vertically coupled microring resonator add/drop filter. Journal of Lightwave Technology, 2001, 19, 266-271.	2.7	22

#	Article	IF	Citations
307	Trapping atoms with evanescent light fields from integrated optical waveguides. , 2001, , .		O
308	Polarisation-independent vertically coupled microring resonator filter. Electronics Letters, 2001, 37, 90.	0.5	21
309	<title>Application of microresonators in large-scale optical signal processing circuits</title> ., 2000, 3930, 193.		0
310	Design of Temperature Independent Add/Drop Filter Using Vertical Coupled ARROW Filter. Japanese Journal of Applied Physics, 2000, 39, 1497-1502.	0.8	0
311	Vertical antiresonant reflecting optical waveguide coupler for three-dimensional optical interconnects: optimum design for large tolerance, high coupling efficiency, and short coupling length. Applied Optics, 2000, 39, 426.	2.1	6
312	Pedestal antiresonant reflecting waveguides for robust coupling to microsphere resonators and for microphotonic circuits. Optics Letters, 2000, 25, 73.	1.7	66
313	Filter synthesis for periodically coupled microring resonators. Optics Letters, 2000, 25, 344.	1.7	138
314	Internal spatial modes in glass microring resonators. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6, 46-53.	1.9	26
315	Microring resonator arrays for VLSI photonics. IEEE Photonics Technology Letters, 2000, 12, 323-325.	1.3	215
316	Theory of polarization rotation and conversion in vertically coupled microresonators. IEEE Photonics Technology Letters, 2000, 12, 401-403.	1.3	55
317	Theory of loss and gain trimming of resonator-type filters. IEEE Photonics Technology Letters, 2000, 12, 636-638.	1.3	13
318	A full vector analysis of near-field luminescence probing of a single quantum dot. Applied Physics Letters, 1999, 74, 1507-1509.	1.5	14
319	Polarization effects in near-field excitation - collection probe optical microscopy of a single quantum dot. Journal of Microscopy, 1999, 194, 421-425.	0.8	6
320	A single channel dropping filter based on a cylindrical microresonator. Optics Communications, 1999, 167, 77-82.	1.0	18
321	Measurement of internal spatial modes and local propagation properties in optical waveguides. Applied Physics Letters, 1999, 75, 2368-2370.	1.5	26
322	Second-order filter response from parallel coupled glass microring resonators. IEEE Photonics Technology Letters, 1999, 11, 1426-1428.	1.3	115
323	Broadband box-like filters using tapered waveguides. Electronics Letters, 1999, 35, 1462.	0.5	0
324	Vertically coupled glass microring resonator channel dropping filters. IEEE Photonics Technology Letters, 1999, 11, 215-217.	1.3	169

#	Article	IF	Citations
325	59-nm trimming of center wavelength of ARROW-type vertical coupler filter by UV irradiation. IEEE Photonics Technology Letters, 1999, 11, 358-360.	1.3	8
326	Wavelength trimming of a microring resonator filter by means of a UV sensitive polymer overlay. IEEE Photonics Technology Letters, 1999, 11, 688-690.	1.3	80
327	An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid. IEEE Photonics Technology Letters, 1999, 11, 691-693.	1.3	261
328	High-coupling efficiency vertical ARROW coupler with large tolerance and short coupling length for three-dimensional optical interconnects. IEEE Photonics Technology Letters, 1999, 11, 1006-1008.	1.3	8
329	Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay. IEEE Photonics Technology Letters, 1999, 11, 1138-1140.	1.3	43
330	Cascaded microring resonators for crosstalk reduction and spectrum cleanup in add-drop filters. IEEE Photonics Technology Letters, 1999, 11, 1423-1425.	1.3	74
331	ARROW-type vertical coupler filter: design and fabrication. Journal of Lightwave Technology, 1999, 17, 652-658.	2.7	5
332	IC compatible optical coupling techniques for integration of ARROW with photodetector. Journal of Lightwave Technology, 1998, 16, 1423-1432.	2.7	9
333	Track changing by use of the phase response of microspheres and resonators. Optics Letters, 1998, 23, 894.	1.7	20
334	Second-order filtering and sensing with partially coupled traveling waves in a single resonator. Optics Letters, 1998, 23, 1570.	1.7	92
335	Reduction of filter sidelobe level by an X-crossing vertical coupled ARROW filter. IEEE Photonics Technology Letters, 1998, 10, 391-393.	1.3	9
336	Planarization of Film Deposition and Improvement of Channel Structure for Fabrication of Anti-Resonant Reflecting Optical Waveguide Type X-crossing Vertical Coupler Filter. Japanese Journal of Applied Physics, 1998, 37, 3713-3717.	0.8	7
337	Sidelobe Suppression of Vertical Coupler Filter with an X-Crossing Configuration. Japanese Journal of Applied Physics, 1998, 37, 3708-3712.	0.8	4
338	Surface-roughness-induced contradirectional coupling in ring and disk resonators. Optics Letters, 1997, 22, 4.	1.7	226
339	Microring resonator channel dropping filters. Journal of Lightwave Technology, 1997, 15, 998-1005.	2.7	1,415
340	Narrowband optical wavelength comb by ARROW-type vertical coupler with thick cavity. Electronics Letters, 1997, 33, 1947.	0.5	1
341	Compact ARROW-type vertical coupler filter. IEEE Photonics Technology Letters, 1996, 8, 1492-1494.	1.3	6
342	Estimating surface-roughness loss and output coupling in microdisk resonators. Optics Letters, 1996, 21, 1390.	1.7	80

#	Article	IF	CITATIONS
343	Simulation and fabrication of ARROW directional couplers. , 1995, , .		1
344	Versatile stacked ARROW crossconnect for three-dimensional optical interconnects. Electronics Letters, 1995, 31, 33-35.	0.5	3
345	<title>Computer-aided design of optical interconnects</title> ., 1994, 2153, 272.		0
346	The finite-difference vector beam propagation method: analysis and assessment. Journal of Lightwave Technology, 1992, 10, 295-305.	2.7	250
347	A scalar coupled-mode theory with vector correction. IEEE Journal of Quantum Electronics, 1992, 28, 184-193.	1.0	18
348	Time-explicit simulation of wave interaction in optical waveguide crossings at large angles. Applied Optics, 1991, 30, 1464.	2.1	5
349	A semivectorial finite-difference time-domain method (optical guided structure simulation). IEEE Photonics Technology Letters, 1991, 3, 803-806.	1.3	62
350	A scalar finite-difference time-domain approach to guided-wave optics. IEEE Photonics Technology Letters, 1991, 3, 524-526.	1.3	89
351	A vector beam propagation method for guided-wave optics. IEEE Photonics Technology Letters, 1991, 3, 910-913.	1.3	52
352	Vector beam propagation method based on finite-difference. , 1991, 1583, 268.		1
353	Simulation and analysis of waveguide based optical integrated circuits. Computer Physics Communications, 1991, 68, 451-484.	3.0	53
354	Combining modal analysis and the finite-difference time-domain method in the study of dielectric waveguide problems. IEEE Transactions on Microwave Theory and Techniques, 1990, 38, 1755-1760.	2.9	27
355	A finite-difference time-domain method for the design and analysis of guided-wave optical structures. Journal of Lightwave Technology, 1989, 7, 2033-2038.	2.7	128
356	Box-like filter response by vertically series coupled microring resonator filter. , 0, , .		3
357	Trapping and manipulating atoms with guided evanescent fields. , 0, , .		1
358	Channel spacing control of microring resonator add/drop filter array by UV trimming technique. , 0, , .		0
359	A novel integrated laser source without a laser. SPIE Newsroom, 0, , .	0.1	3
360	Experimental Demonstration of Self-Oscillation Microcomb in a Mode-Splitting Microresonator. Frontiers in Physics, 0, 10, .	1.0	1