Jacek Tejchman

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/1563351/publications.pdf
Version: 2024-02-01

$\begin{gathered} 180 \\ \text { papers } \end{gathered}$	$\begin{aligned} & \text { 4,805 } \\ & \text { citations } \end{aligned}$	87888 38 h-index	$\begin{gathered} 128289 \\ 60 \\ \text { g-index } \end{gathered}$
$\begin{gathered} 186 \\ \text { all docs } \end{gathered}$	$\begin{gathered} 186 \\ \text { docs citations } \end{gathered}$	$\begin{gathered} 186 \\ \text { times ranked } \end{gathered}$	2172 citing authors

Experimental and numerical investigations on RC beams with stirrups scaled along height or length.

3D DEM simulations of monotonic interface behaviour between cohesionless sand and rigid wall of

Effect of gas content in macropores on hydraulic fracturing in rocks using a fully coupled DEM/CFD
4 approach. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45,
$5 \quad$ Finite element analysis on failure of reinforced concrete corner in sewage tank under opening

8 Comparative 3D DEM simulations of sandâ "structure interfaces with similarly shaped clumps versus spheres with contact moments. Acta Geotechnica, 2021, 16, 3533-3554.

9 Micro-modelling of shear localization during quasi-static confined granular flow in silos using DEM.
$9 \quad$ Computers and Geotechnics, 2021, 134, 104108.

Modelling of full-scale silo experiments with flow correcting inserts using material point method
(MPM) based on hypoplasticity. Powder Technology, 2021, 392, 375-392.
4.2

5

11	Numerical analyses of novel prefabricated structural wall panels in residential buildings based on laboratory tests in scale 1:1. European Journal of Environmental and Civil Engineering, 2020, 24, 1450-1482.	2.1	5
12	Simulations of hydro-fracking in rock mass at meso-scale using fully coupled DEM/CFD approach. Acta Geotechnica, 2020, 15, 297-324.	5.7	39
13	Early prediction of macrocrack location in concrete, rocks and other granular composite materials. Scientific Reports, 2020, 10, 20268.	3.3	7

14 Contact force network evolution in active earth pressure state of granular materials: photo-elastic tests and DEM. Granular Matter, 2020, 22, 1.
2.2

14

Comparative DEM calculations of fracture process in concrete considering real angular and
4.3

35 artificial spherical aggregates. Engineering Fracture Mechanics, 2020, 239, 107309.

35

Numerical modelling of shear localization in granular bodies using MPM and non-local
hypoplasticity. AIP Conference Proceedings, 2020, , .
and Heterogeneous, Quasi-Brittle Granular Materials. Frontiers in Materials, 2020, 7, .
Improved energy management technique in pipe-embedded wall heating/cooling system in residential
buildings. Applied Energy, 2019, 254, 113711.
Experimental investigations of damage evolution in concrete during bending by cont
scanning. Materials Characterization, $2019,154,40-52$.
Numerical analysis of size effect in RC beams scaled along height or length using
Experimental study of shear strength and failure mechanisms in RC beams scaled along height or
length. Engineering Structures, 2018, 157, 203-223.

26 A three-dimensional meso-scale approach to concrete fracture based on combined DEM with X-ray $11 / 4 \mathrm{CT}$

 images. Cement and Concrete Research, 2018, 107, 11-29.$$
\begin{aligned}
& 29 \text { Experimental and numerical investigations of concrete behaviour at meso-level during quasi-static } \\
& \text { splitting tension. Theoretical and Applied Fracture Mechanics, 2018, } 96,720-739 \text {. }
\end{aligned}
$$

Investigation of micro-structural phenomena at aggregate level in concretes using DEM. EPJ Web of

41	DEM investigations of two-dimensional granular vortex- and anti-vortex-structures during plane strain compression. Granular Matter, 2016, 18, 1.	2.2	6
42	Experimental Investigations of Fracture Process in Concrete by Means of Xâ€ $\mathrm{F}_{\text {ay }}$ Microâ€ $€$ omputed Tomography. Strain, 2016, 52, 26-45.	2.4	97
43	Application of linear buckling sensitivity analysis to economic design of cylindrical steel silos composed of corrugated sheets and columns. Engineering Failure Analysis, 2016, 70, 105-121.	4.0	16
44	Two-dimensional simulations of concrete fracture at aggregate level with cohesive elements based on X-ray $11 / 4$ CT images. Engineering Fracture Mechanics, 2016, 168, 204-226.	4.3	88
45	Buckling analyses of metal cylindrical silos containing bulk solids during filling. Particulate Science and Technology, 2016, 34, 461-469.	2.1	2
46	Comparison of continuous and discontinuous constitutive models to simulate concrete behaviour under mixedâ€mode failure conditions. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40, 406-435.	3.3	26
47	A coupled constitutive model for fracture in plain concrete based on continuum theory with non-local softening and eXtended Finite Element Method. Finite Elements in Analysis and Design, 2016, 114, 1-21.	3.2	26
48	Stability analyses of a cylindrical steel silo with corrugated sheets and columns. Steel and Composite Structures, 2016, 20, 147-166.	1.3	11
49		2.2	132

DEM analysis of micro-structural events within granular shear zones under passive earth pressure

Simulation of buckling process of cylindrical metal silos with flat sheets containing bulk solids.
Thin-Walled Structures, 2015, 93, 122-136.

55	Modelling of concrete fracture at aggregate level using FEM and DEM based on X-ray $11 / 4$ CT images of internal structure. Engineering Fracture Mechanics, 2015, 147, 13-35.	4.3	145
56	Stability of cylindrical steel silos composed of corrugated sheets and columns based on FE analyses versus Eurocode 3 approach. Engineering Failure Analysis, 2015, 57, 444-469.	4.0	20
57	Effect of bulk solid on strength of cylindrical corrugated silos during filling. Journal of Constructional Steel Research, 2015, 115, 1-17.	3.9	17
58	Computational simulations of concrete behaviour under dynamic conditions using elasto-visco-plastic model with non-local softening. Computers and Concrete, 2015, 15, 515-545.	0.7	15
59	Discrete Modelling of Micro-structural Phenomena in Granular Shear Zones. Springer Series in Geomechanics and Geoengineering, 2015, , 7-12.	0.1	1
60	Experimental investigations of size effect in reinforced concrete beams failing by shear. Engineering Structures, 2014, 58, 63-78.	5.3	77
61	Application of inserts for suppression of coupled dynamicâ $€$ "acoustic effects during confined granular flow in silos. Advanced Powder Technology, 2014, 25, 398-407.	4.1	5
62	Dynamic FE simulations of buckling process in thin-walled cylindrical metal silos. Thin-Walled Structures, 2014, 84, 344-359.	5.3	32
63	Discrete simulations of a triaxial compression test for sand by DEM. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38, 1923-1952.	3.3	82
64	FE analysis of size effects in reinforced concrete beams without shear reinforcement based on stochastic elasto-plasticity with non-local softening. Finite Elements in Analysis and Design, 2014, 88, 25-41.	3.2	31
65	Evaluation of strength, deformability and failure mode of composite structural insulated panels. Materials \& Design, 2014, 54, 1068-1082.	5.1	39

66 An elasto-plastic constitutive model with non-local softening and viscosity to describe dynamic concrete behaviour. , 2014, , 127-137.

69 Application of DIC Technique to Concreteâ€"Study on Objectivity of Measured Surface Displacements. Experimental Mechanics, 2013, 53, 1545-1559.

Mesoscopic Modelling of Strain Localization in Plain Concrete. Springer Series in Ceomechanics and
81 Continuous and Discontinuous Modelling of Fracture in Concrete Using FEM. Springer Series in
Geomechanics and Geoengineering, 2013, , .$0.1 \quad 24$
Experimental Study on Shear Localisation in Granular Materials Within Combined Strain and Stress
Field. Strain, 2012, 48, 430-444.

Effect of grain roughness on strength, volume changes, elastic and dissipated energies during quasi-static homogeneous triaxial compression using DEM. Granular Matter, 2012, 14, 457-468.
2.2

66
Confined granular flow in silos with inserts â€" Full-scale experiments. Powder Technology, 2012, 222,
15-36.

94 Effect of grain crushing on shear localization in granular bodies during plane strain compression.
International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36, 1909-1931.
3.3

11
95 Determination of representative volume element in concrete under tensile deformation. Computers
and Concrete, $2012,9,35-50$.
$0.7 \quad 16$

96 A Two-Scale Numerical Approach to Granular Systems / Wybrane Problemy Szacowania
Prawdopodobienstwa Zawodu W Sytuacji Pozaru. Archives of Civil Engineering, 2011, 57, 313-330.
Measurements and Calculations of the Width of the Fracture Process Zones on the Surface of
Notched Concrete Beams. Strain, 2011, 47, e319.

$98 \quad$| Experimental Analysis of Shear Zone Patterns in Cohesionless for Earth Pressure Problems Using |
| :--- |
| Particle Image Velocimetry. Strain, 2011, 47, 218-231. |

$99 \quad$| Failure of cylindrical steel silos composed of corrugated sheets and columns and repair methods |
| :--- |
| using a sensitivity analysis. Engineering Failure Analysis, 2011, 18, 2064-2083. |

FE analysis of reinforced concrete corbels with enhanced continuum models. Finite Elements in
Analysis and Design, 2011, 47, 1066-1078.
101 Modeling of bearing capacity of footings on sand within stochastic microâ€polar hypoplasticity.
International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35, 226-243.

Discrete simulations of shear zone patterning in sand in earth pressure problems of a retaining wall.
102 International Journal of Solids and Structures, 2011, 48, 1191-1209.
2.7

68

Quantitative estimation of volume changes of granular materials during silo flow using X-ray
103 tomography. Chemical Engineering and Processing: Process Intensification, 2011, 50, 59-67.
3.6

33

3D buckling analysis of a cylindrical metal bin composed of corrugated sheets strengthened by vertical stiffeners. Thin-Walled Structures, 2011, 49, 947-963.
5.3

24
Finite element study of patterns of shear zones in granular bodies during plane strain compression.

Acta Geotechnica, 2010, 5, 95-112. \quad\begin{tabular}{l}
Boundary effects on behaviour of granular material during plane strain compression. European

Journal of Mechanics, A/Solids, 2010, 29, 18-27.

\quad

Calculations of fracture process zones on meso-scale in notched concrete beams subjected to

three-point bending. European Journal of Mechanics, A/Solids, 2010, 29, 746-760.
\end{tabular}

Nonâ€coaxiality and stressâ€"dilatancy rule in granular materials: FE investigation within microâ€polar
116 hypoplasticity. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33, 117-142.

117 FE-investigation of shear localization in granular bodies under high shear rate. Granular Matter 2009, 11, 115-128.

Determination of bulk solid concentration changes during granular flow in a model silo with ECT sensors. Chemical Engineering Science, 2009, 64, 20-30.
3.8

45
FE analysis of failure behaviour of reinforced concrete columns under eccentric compression.
127 Engineering Structures, 2008, 30, 300-317.
132 Finite Element Calculations: Preliminary Results. Springer Series in Geomechanics and Geoengineering,
135 Effect of a characteristic length on crack spacing in a reinforced concrete bar under tension.Mechanics Research Communications, 2007, 34, 460-465.
Investigations of Porosity Changes during Granular Silo Flow Using Electrical Capacitance
137
Tomography (ECT) and Particle Image Velocimetry (PIV). Particle and Particle Systems Characterization,
2007, 24, 304-312.
139 FE-investigations of a deterministic and statistical size effect in granular bodies within a micro-polar
hypoplasticity. Granular Matter, 2007, 9, 439-453.

Influence of initial density of cohesionless soil on evolution of passive earth pressure. Acta

\#	Article	IF	
145	Effect of fluctuation of current void ratio on the shear zone formation in granular bodies within micro-polar hypoplasticity. Computers and Geotechnics, 2006, 33, 29-46.	4.7	31
146	FE-studies on Shear Localization in an Anistropic Micro-polar Hypoplastic Granular Material. Granular Matter, 2006, 8, 205-220.	2.2	38
147	FE Analysis of Contractant Shear Zones in Loose Granular Materials. Granular Matter, 2006, 9, 49-67.	2.2	9
148	Micro-Polar Effects under Monotonic and Cyclic Shearing. Springer Proceedings in Physics, 2006, , 193-207.	0.2	4
149	Fe-simulations of a direct and a true simple shear test within a polar hypoplasticity. Computers and Geotechnics, 2005, 32, 1-16.	4.7	36
150	Application of a cellular automaton to simulations of granular flow in silos. Granular Matter, 2005, 7, 45-54.	2.2	43
151	Modeling of a cyclic plane strain compression-extension test in granular bodies within a polar hypoplasticity. Granular Matter, 2005, 7, 227-242.	2.2	9
152	FE Analysis of Shearing of Granular Bodies in a Direct Shear Box. Particulate Science and Technology, 2005, 23, 229-248.	2.1	6
153	FE-Simulations of a Direct Wall Shear Box Test. Soils and Foundations, 2004, 44, 67-81.	3.1	15
154	Effect of cyclic shearing on shear localisation in granular bodies. Granular Matter, 2004, 5, 201-212.	2.2	23
155	Influence of a characteristic length on shear zone formation in hypoplasticity with different enhancements. Computers and Geotechnics, 2004, 31, 595-611.	4.7	67
156	Comparative FE-studies of shear localizations in granular bodies within a polar and non-local hypoplasticity. Mechanics Research Communications, 2004, 31, 341-354.	1.8	16
157	Numerical simulations of localization of deformation in quasi-brittle materials within non-local softening plasticity. Computers and Concrete, 2004, 1, 433-455.	0.7	32
158	Modelling of Shear Zones in Granular Materials within Hypoplasticity. Lecture Notes in Computer Science, 2004, , 340-347.	1.3	0
159	Effect of Heterogeneity on Formation of Shear Zones in Granular Bodies. Lecture Notes in Computer Science, 2004, , 626-629.	1.3	0

160 FE-studies on formation of shear zones in granular bodies within a polar hypoplasticity. , 2003, , .

```
161 Patterns of shear zones in granular bodies within a polar hypoplastic continuum. Acta Mechanica, 2002, 155, 71-94.
```163 FE-studies on rapid flow of bulk solids in silos. Granular Matter, 2001, 3, 215-230.2.2
Shearing of a narrow granular layer with polar quantities. International Journal for Numerical and
165 Bedding effects in bulk solids in silos: experiments and a polar hypoplastic approach. Thin-Walled 5.3 12
Structures, 2000, 37, 333-361.172.2FE-studies on the influence of initial void ratio, pressure level and mean grain diameter on shear168 localization. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23,3.32045-2074.
A â€œClass Aâ \(€\) •Prediction of \(t\)
Foundations, 1999, 39, 47-60. 3.1 37
Silo-quakeâ€"measurements, a numerical approach and a way for its suppression. Thin-Walled5.315
170 Structures, 1998, 31, 137-158.
Dynamic Patterning of Shear Bands in Cosserat Continuum. Journal of Engineering Mechanics - ASCE, \begin{tabular}{l}
Dynamic Patterning of \\
171 \\
\\
\hline
\end{tabular} 2.9 104.732Numerical simulation of shear band formation with a hypoplastic constitutive model. Computers andGeotechnics, 1996, 18, 71-84.
4.7 128
173 Numerical simulation of shear band formation with a polar hypoplastic constitutive model.Computers and Geotechnics, 1996, 19, 221-244.Experimental and numerical study of sand-steel interfaces. International Journal for Numerical and
3.3 74
Analytical Methods in Geomechanics, 1995, 19, 513-536. 174
175 Numerical Study on sand and steel interfaces. Mechanics Research Communications, 1994, 21, 109-119. 1.8 7Numerical simulation of shear band patterning in biaxial compression tests. Mechanics Research1.82Communications, 1993, 20, 15-24.2.112976, 201-212.```

