Jacek Tejchman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1563351/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modelling of concrete fracture at aggregate level using FEM and DEM based on X-ray μCT images of internal structure. Engineering Fracture Mechanics, 2015, 147, 13-35.	4.3	145
2	Modelling of concrete behaviour in uniaxial compression and tension with DEM. Granular Matter, 2015, 17, 145-164.	2.2	132
3	Numerical study on patterning of shear bands in a Cosserat continuum. Acta Mechanica, 1993, 99, 61-74.	2.1	129
4	Numerical simulation of shear band formation with a polar hypoplastic constitutive model. Computers and Geotechnics, 1996, 19, 221-244.	4.7	128
5	A three-dimensional meso-scale approach to concrete fracture based on combined DEM with X-ray μCT images. Cement and Concrete Research, 2018, 107, 11-29.	11.0	123
6	Discrete element method simulations of fracture in concrete under uniaxial compression based on its real internal structure. International Journal of Damage Mechanics, 2018, 27, 578-607.	4.2	98
7	Experimental Investigations of Fracture Process in Concrete by Means of Xâ€ray Microâ€computed Tomography. Strain, 2016, 52, 26-45.	2.4	97
8	A three-dimensional meso-scale modelling of concrete fracture, based on cohesive elements and X-ray μCT images. Engineering Fracture Mechanics, 2018, 189, 27-50.	4.3	97
9	Application of particle image velocimetry (PIV) for deformation measurement during granular silo flow. Powder Technology, 2007, 173, 1-18.	4.2	93
10	Calculations of fracture process zones on meso-scale in notched concrete beams subjected to three-point bending. European Journal of Mechanics, A/Solids, 2010, 29, 746-760.	3.7	93
11	Shearing of a narrow granular layer with polar quantities. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25, 1-28.	3.3	92
12	Two-dimensional simulations of concrete fracture at aggregate level with cohesive elements based on X-ray μCT images. Engineering Fracture Mechanics, 2016, 168, 204-226.	4.3	88
13	Measurements and Calculations of the Width of the Fracture Process Zones on the Surface of Notched Concrete Beams. Strain, 2011, 47, e319.	2.4	83
14	Discrete simulations of a triaxial compression test for sand by DEM. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38, 1923-1952.	3.3	82
15	Experimental investigations of size effect in reinforced concrete beams failing by shear. Engineering Structures, 2014, 58, 63-78.	5.3	77
16	Silo-music and silo-quake experiments and a numerical Cosserat approach. Powder Technology, 1993, 76, 201-212.	4.2	76
17	Experimental and numerical study of sand-steel interfaces. International Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19, 513-536.	3.3	74
18	Application of DIC Technique to Concrete—Study on Objectivity of Measured Surface Displacements. Experimental Mechanics, 2013, 53, 1545-1559.	2.0	72

#	Article	IF	CITATIONS
19	Discrete modelling results of a direct shear test for granular materials versus FE results. Granular Matter, 2013, 15, 607-627.	2.2	71
20	Modeling of shear localization during confined granular flow in silos within non-local hypoplasticity. Powder Technology, 2009, 192, 298-310.	4.2	70
21	Discrete simulations of shear zone patterning in sand in earth pressure problems of a retaining wall. International Journal of Solids and Structures, 2011, 48, 1191-1209.	2.7	68
22	Fracture evolution in concrete compressive fatigue experiments based on X-ray micro-CT images. International Journal of Fatigue, 2019, 122, 256-272.	5.7	68
23	Influence of a characteristic length on shear zone formation in hypoplasticity with different enhancements. Computers and Geotechnics, 2004, 31, 595-611.	4.7	67
24	Effect of grain roughness on strength, volume changes, elastic and dissipated energies during quasi-static homogeneous triaxial compression using DEM. Granular Matter, 2012, 14, 457-468.	2.2	66
25	FE analysis of failure behaviour of reinforced concrete columns under eccentric compression. Engineering Structures, 2008, 30, 300-317.	5.3	64
26	Meso-mechanical modelling of damage in concrete using discrete element method with porous ITZs of defined width around aggregates. Engineering Fracture Mechanics, 2020, 231, 107029.	4.3	60
27	FE-studies on the influence of initial void ratio, pressure level and mean grain diameter on shear localization. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23, 2045-2074.	3.3	59
28	Experimental Investigations of Fracture Process Using DIC in Plain and Reinforced Concrete Beams under Bending. Strain, 2013, 49, 521-543.	2.4	59
29	Experimental and numerical investigations of concrete behaviour at meso-level during quasi-static splitting tension. Theoretical and Applied Fracture Mechanics, 2018, 96, 720-739.	4.7	57
30	Modelling of fracture process in concrete using a novel lattice model. Granular Matter, 2008, 10, 377-388.	2.2	56
31	Experimental Analysis of Shear Zone Patterns in Cohesionless for Earth Pressure Problems Using Particle Image Velocimetry. Strain, 2011, 47, 218-231.	2.4	54
32	Experimental investigations of damage evolution in concrete during bending by continuous micro-CT scanning. Materials Characterization, 2019, 154, 40-52.	4.4	54
33	Comparison of physical performances of the ventilation systems in low-energy residential houses. Energy and Buildings, 2009, 41, 337-353.	6.7	49
34	Silo music — Mechanism of dynamic flow and structure interaction. Powder Technology, 2008, 186, 113-129.	4.2	46
35	Determination of bulk solid concentration changes during granular flow in a model silo with ECT sensors. Chemical Engineering Science, 2009, 64, 20-30.	3.8	45
36	Confined granular flow in silos with inserts — Full-scale experiments. Powder Technology, 2012, 222, 15-36.	4.2	44

Jacek Tejchman

#	Article	IF	CITATIONS
37	Application of a cellular automaton to simulations of granular flow in silos. Granular Matter, 2005, 7, 45-54.	2.2	43
38	Nonâ€coaxiality and stress–dilatancy rule in granular materials: FE investigation within microâ€polar hypoplasticity. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33, 117-142.	3.3	41
39	FE calculations of a deterministic and statistical size effect in concrete under bending within stochastic elasto-plasticity and non-local softening. Engineering Structures, 2013, 48, 205-219.	5.3	41
40	Patterns of shear zones in granular bodies within a polar hypoplastic continuum. Acta Mechanica, 2002, 155, 71-94.	2.1	40
41	Evaluation of strength, deformability and failure mode of composite structural insulated panels. Materials & Design, 2014, 54, 1068-1082.	5.1	39
42	Simulations of hydro-fracking in rock mass at meso-scale using fully coupled DEM/CFD approach. Acta Geotechnica, 2020, 15, 297-324.	5.7	39
43	FE-studies on Shear Localization in an Anistropic Micro-polar Hypoplastic Granular Material. Granular Matter, 2006, 8, 205-220.	2.2	38
44	Experimental and theoretical investigations of silo music. Powder Technology, 2010, 198, 38-48.	4.2	38
45	Improved energy management technique in pipe-embedded wall heating/cooling system in residential buildings. Applied Energy, 2019, 254, 113711.	10.1	37
46	A "Class A―Prediction of the Bearing Capacity of Plane Strain Footings on Sand. Soils and Foundations, 1999, 39, 47-60.	3.1	37
47	Fe-simulations of a direct and a true simple shear test within a polar hypoplasticity. Computers and Geotechnics, 2005, 32, 1-16.	4.7	36
48	Computations of size effects in granular bodies within micro-polar hypoplasticity during plane strain compression. International Journal of Solids and Structures, 2008, 45, 1546-1569.	2.7	36
49	Comparative DEM calculations of fracture process in concrete considering real angular and artificial spherical aggregates. Engineering Fracture Mechanics, 2020, 239, 107309.	4.3	35
50	Technical concept to prevent the silo honking. Powder Technology, 1999, 106, 7-22.	4.2	34
51	Quantitative estimation of volume changes of granular materials during silo flow using X-ray tomography. Chemical Engineering and Processing: Process Intensification, 2011, 50, 59-67.	3.6	33
52	Numerical simulation of shear band formation with a hypoplastic constitutive model. Computers and Geotechnics, 1996, 18, 71-84.	4.7	32
53	Effect of fabric anisotropy on shear localization in sand during plane strain compression. Acta Mechanica, 2007, 189, 23-51.	2.1	32
54	Dynamic FE simulations of buckling process in thin-walled cylindrical metal silos. Thin-Walled Structures, 2014, 84, 344-359.	5.3	32

#	Article	IF	CITATIONS
55	DEM analysis of micro-structural events within granular shear zones under passive earth pressure conditions. Granular Matter, 2015, 17, 325-343.	2.2	32
56	Numerical simulations of localization of deformation in quasi-brittle materials within non-local softening plasticity. Computers and Concrete, 2004, 1, 433-455.	0.7	32
57	Effect of fluctuation of current void ratio on the shear zone formation in granular bodies within micro-polar hypoplasticity. Computers and Geotechnics, 2006, 33, 29-46.	4.7	31
58	Modeling of textural anisotropy in granular materials with stochastic micro-polar hypoplasticity. International Journal of Non-Linear Mechanics, 2007, 42, 882-894.	2.6	31
59	Failure of cylindrical steel silos composed of corrugated sheets and columns and repair methods using a sensitivity analysis. Engineering Failure Analysis, 2011, 18, 2064-2083.	4.0	31
60	FE analysis of size effects in reinforced concrete beams without shear reinforcement based on stochastic elasto-plasticity with non-local softening. Finite Elements in Analysis and Design, 2014, 88, 25-41.	3.2	31
61	FE analysis of reinforced concrete corbels with enhanced continuum models. Finite Elements in Analysis and Design, 2011, 47, 1066-1078.	3.2	30
62	FE investigations of the effect of fluctuating local tensile strength on coupled energetic–statistical size effect in concrete beams. Engineering Structures, 2015, 103, 239-259.	5.3	30
63	Simulations of spacing of localized zones in reinforced concrete beams using elasto-plasticity and damage mechanics with non-local softening. Computers and Concrete, 2007, 4, 377-402.	0.7	29
64	Comparison of continuous and discontinuous constitutive models to simulate concrete behaviour under mixedâ€mode failure conditions. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40, 406-435.	3.3	26
65	A coupled constitutive model for fracture in plain concrete based on continuum theory with non-local softening and eXtended Finite Element Method. Finite Elements in Analysis and Design, 2016, 114, 1-21.	3.2	26
66	Full-scale experiments on wheat flow in steel silo composed of corrugated walls and columns. Powder Technology, 2017, 311, 537-555.	4.2	26
67	Finite element study of patterns of shear zones in granular bodies during plane strain compression. Acta Geotechnica, 2010, 5, 95-112.	5.7	25
68	Influence of initial density of cohesionless soil on evolution of passive earth pressure. Acta Geotechnica, 2007, 2, 53-63.	5.7	24
69	3D buckling analysis of a cylindrical metal bin composed of corrugated sheets strengthened by vertical stiffeners. Thin-Walled Structures, 2011, 49, 947-963.	5.3	24
70	3D DEM simulations of monotonic interface behaviour between cohesionless sand and rigid wall of different roughness. Acta Geotechnica, 2021, 16, 1001-1026.	5.7	24
71	Continuous and Discontinuous Modelling of Fracture in Concrete Using FEM. Springer Series in Geomechanics and Geoengineering, 2013, , .	0.1	24
72	Effect of cyclic shearing on shear localisation in granular bodies. Granular Matter, 2004, 5, 201-212.	2.2	23

#	Article	IF	CITATIONS
73	Deterministic and statistical size effect during shearing of granular layer within a micro-polar hypoplasticity. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32, 81-107.	3.3	22
74	FE-investigation of shear localization in granular bodies under high shear rate. Granular Matter, 2009, 11, 115-128.	2.2	21
75	Meso-scale analyses of size effect in brittle materials using DEM. Granular Matter, 2019, 21, 1.	2.2	21
76	Stability of cylindrical steel silos composed of corrugated sheets and columns based on FE analyses versus Eurocode 3 approach. Engineering Failure Analysis, 2015, 57, 444-469.	4.0	20
77	Experimental and numerical assessment of size effect in geometrically similar slender concrete beams with basalt reinforcement. Engineering Structures, 2017, 141, 272-291.	5.3	20
78	Application of ECT to solid concentration measurements during granular flow in a rectangular model silo. Chemical Engineering Research and Design, 2010, 88, 1037-1048.	5.6	19
79	Critical assessment of Eurocode approach to stability of metal cylindrical silos with corrugated walls and vertical stiffeners. Thin-Walled Structures, 2015, 95, 335-346.	5.3	19
80	FE-investigations of micro-polar boundary conditions along interface between soil and structure. Granular Matter, 2010, 12, 399-410.	2.2	18
81	Field investigations of stack ventilation in a residential building with multiple chimneys and tilted window in cold climate. Energy and Buildings, 2015, 103, 48-61.	6.7	18
82	Effect of gas content in macropores on hydraulic fracturing in rocks using a fully coupled DEM/CFD approach. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45, 234-264.	3.3	18
83	FE-studies on rapid flow of bulk solids in silos. Granular Matter, 2001, 3, 215-230.	2.2	17
84	Simulation of buckling process of cylindrical metal silos with flat sheets containing bulk solids. Thin-Walled Structures, 2015, 93, 122-136.	5.3	17
85	Effect of bulk solid on strength of cylindrical corrugated silos during filling. Journal of Constructional Steel Research, 2015, 115, 1-17.	3.9	17
86	Comparative FE-studies of shear localizations in granular bodies within a polar and non-local hypoplasticity. Mechanics Research Communications, 2004, 31, 341-354.	1.8	16
87	FE-calculations of stress distribution under prismatic and conical sandpiles within hypoplasticity. Granular Matter, 2008, 10, 399-405.	2.2	16
88	Application of linear buckling sensitivity analysis to economic design of cylindrical steel silos composed of corrugated sheets and columns. Engineering Failure Analysis, 2016, 70, 105-121.	4.0	16
89	Comparative 3D DEM simulations of sandâ \in structure interfaces with similarly shaped clumps versus spheres with contact moments. Acta Geotechnica, 2021, 16, 3533-3554.	5.7	16
90	Determination of representative volume element in concrete under tensile deformation. Computers and Concrete, 2012, 9, 35-50.	0.7	16

#	Article	IF	CITATIONS
91	Silo-quake—measurements, a numerical approach and a way for its suppression. Thin-Walled Structures, 1998, 31, 137-158.	5.3	15
92	FE-Simulations of a Direct Wall Shear Box Test. Soils and Foundations, 2004, 44, 67-81.	3.1	15
93	Influence of input data on airflow network accuracy in residential buildings with natural wind- and stack-driven ventilation. Building Simulation, 2017, 10, 229-238.	5.6	15
94	Computational simulations of concrete behaviour under dynamic conditions using elasto-visco-plastic model with non-local softening. Computers and Concrete, 2015, 15, 515-545.	0.7	15
95	Behaviour of granular bodies in induced shear zones. Granular Matter, 2000, 2, 77-96.	2.2	14
96	Effect of a characteristic length on crack spacing in a reinforced concrete bar under tension. Mechanics Research Communications, 2007, 34, 460-465.	1.8	14
97	Contact force network evolution in active earth pressure state of granular materials: photo-elastic tests and DEM. Granular Matter, 2020, 22, 1.	2.2	14
98	Bedding effects in bulk solids in silos: experiments and a polar hypoplastic approach. Thin-Walled Structures, 2000, 37, 333-361.	5.3	12
99	Boundary effects on behaviour of granular material during plane strain compression. European Journal of Mechanics, A/Solids, 2010, 29, 18-27.	3.7	12
100	Coupled Evolution of Preferential Paths for Force and Damage in the Pre-failure Regime in Disordered and Heterogeneous, Quasi-Brittle Granular Materials. Frontiers in Materials, 2020, 7, .	2.4	12
101	Modelling reinforced concrete beams under mixed shear-tension failure with different continuous FE approaches. Computers and Concrete, 2013, 12, 585-612.	0.7	12
102	Experimental Study on Shear Localisation in Granular Materials Within Combined Strain and Stress Field. Strain, 2012, 48, 430-444.	2.4	11
103	Effect of grain crushing on shear localization in granular bodies during plane strain compression. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36, 1909-1931.	3.3	11
104	Experimental study of shear strength and failure mechanisms in RC beams scaled along height or length. Engineering Structures, 2018, 157, 203-223.	5.3	11
105	Stability analyses of a cylindrical steel silo with corrugated sheets and columns. Steel and Composite Structures, 2016, 20, 147-166.	1.3	11
106	Dynamic Patterning of Shear Bands in Cosserat Continuum. Journal of Engineering Mechanics - ASCE, 1997, 123, 123-133.	2.9	10
107	Relationship between vortex structures and shear localization in 3D granular specimens based on combined DEM and Helmholtz–Hodge decomposition. Granular Matter, 2018, 20, 1.	2.2	10
108	Numerical analysis of size effect in RC beams scaled along height or length using elasto-plastic-damage model enhanced by non-local softening. Finite Elements in Analysis and Design, 2019, 157, 1-20.	3.2	10

#	Article	IF	CITATIONS
109	Investigations on fracture in reinforced concrete beams in 3-point bending using continuous micro-CT scanning. Construction and Building Materials, 2021, 284, 122796.	7.2	10
110	Comparative study of high-pressure fluid flow in densely packed granules using a 3D CFD model in a continuous medium and a simplified 2D DEM-CFD approach. Granular Matter, 2022, 24, 1.	2.2	10
111	Modeling of a cyclic plane strain compression-extension test in granular bodies within a polar hypoplasticity. Granular Matter, 2005, 7, 227-242.	2.2	9
112	FE Analysis of Contractant Shear Zones in Loose Granular Materials. Granular Matter, 2006, 9, 49-67.	2.2	9
113	Modeling of bearing capacity of footings on sand within stochastic microâ€polar hypoplasticity. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35, 226-243.	3.3	9
114	Simplified numerical model for global stability of corrugated silos with vertical stiffeners. Journal of Constructional Steel Research, 2017, 138, 93-116.	3.9	9
115	Micro-modelling of shear localization during quasi-static confined granular flow in silos using DEM. Computers and Geotechnics, 2021, 134, 104108.	4.7	9
116	Behaviour of granular materials in cylindrical silos. Powder Technology, 1986, 48, 81-90.	4.2	8
117	Determination of buckling strength of silos composed of corrugated walls and thin-walled columns using simplified wall segment models. Thin-Walled Structures, 2019, 135, 414-436.	5.3	8
118	Numerical Study on sand and steel interfaces. Mechanics Research Communications, 1994, 21, 109-119.	1.8	7
119	Investigations of Porosity Changes during Granular Silo Flow Using Electrical Capacitance Tomography (ECT) and Particle Image Velocimetry (PIV). Particle and Particle Systems Characterization, 2007, 24, 304-312.	2.3	7
120	FE-Studies of Different Aspects of Shear Localization in Granular Bodies within Micro-Polar Hypoplasticity. , 2009, , .		7
121	FE-modeling of shear resistance degradation in granular materials during cyclic shearing under CNS condition. Computers and Geotechnics, 2009, 36, 249-263.	4.7	7
122	Investigations of quasi-static vortex structures in 2D sand specimen under passive earth pressure conditions based on DEM and Helmholtz–Hodge vector field decomposition. Granular Matter, 2017, 19, 1.	2.2	7
123	Early prediction of macrocrack location in concrete, rocks and other granular composite materials. Scientific Reports, 2020, 10, 20268.	3.3	7
124	Investigations of local/global buckling of cylindrical metal silos with corrugated sheets and open-sectional column profiles. Thin-Walled Structures, 2018, 123, 341-350.	5.3	7
125	FE Analysis of Shearing of Granular Bodies in a Direct Shear Box. Particulate Science and Technology, 2005, 23, 229-248.	2.1	6
126	DEM investigations of two-dimensional granular vortex- and anti-vortex-structures during plane strain compression. Granular Matter, 2016, 18, 1.	2.2	6

JACEK TEJCHMAN

#	Article	IF	CITATIONS
127	Of cuts and cracks: data analytics on constrained graphs for early prediction of failure in cementitious materials. EPJ Web of Conferences, 2017, 140, 08012.	0.3	6
128	Modelling of shear zones during quasi-static granular silo flow using material point method (MPM). Powder Technology, 2021, 378, 538-560.	4.2	6
129	Effects of Wall Inclinations and Wall Imperfections on Pressures during Granular Flow in Silos. KONA Powder and Particle Journal, 2002, 20, 125-132.	1.7	6
130	Experimental and numerical investigations on RC beams with stirrups scaled along height or length. Engineering Structures, 2022, 252, 113621.	5.3	6
131	Application of inserts for suppression of coupled dynamic–acoustic effects during confined granular flow in silos. Advanced Powder Technology, 2014, 25, 398-407.	4.1	5
132	Numerical analyses of novel prefabricated structural wall panels in residential buildings based on laboratory tests in scale 1:1. European Journal of Environmental and Civil Engineering, 2020, 24, 1450-1482.	2.1	5
133	Modelling of full-scale silo experiments with flow correcting inserts using material point method (MPM) based on hypoplasticity. Powder Technology, 2021, 392, 375-392.	4.2	5
134	A Two-Scale Numerical Approach to Granular Systems / Wybrane Problemy Szacowania Prawdopodobienstwa Zawodu W Sytuacji Pozaru. Archives of Civil Engineering, 2011, 57, 313-330.	0.7	4
135	Modelling the effect of material composition on the tensile properties of concrete. , 2013, , 52-97.		4
136	Finite element analysis on failure of reinforced concrete corner in sewage tank under opening bending moment. Engineering Structures, 2021, 228, 111506.	5.3	4
137	Micro-Polar Effects under Monotonic and Cyclic Shearing. Springer Proceedings in Physics, 2006, , 193-207.	0.2	4
138	Application of Extended Finite Element Method to Cracked Concrete Elements – Numerical Aspects. Archives of Civil Engineering, 2012, 58, 409-431.	0.7	3
139	Computational modelling of concrete behaviour under static and dynamic conditions. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2013, 61, 85-96.	0.8	3
140	Discrete modeling of micro-structure evolution during concrete fracture using DEM. , 2014, , 345-354.		3
141	Simulations of Flow Pattern with Cellular Automaton. Springer Series in Geomechanics and Geoengineering, 2013, , 455-492.	0.1	3
142	Numerical simulation of shear band patterning in biaxial compression tests. Mechanics Research Communications, 1993, 20, 15-24.	1.8	2
143	FE-investigations of a deterministic and statistical size effect in granular bodies within a micro-polar hypoplasticity. Granular Matter, 2007, 9, 439-453.	2.2	2
144	Finite element investigations of granular material behaviour during cyclic wall shearing under a constant normal stiffness condition. Canadian Geotechnical Journal, 2010, 47, 985-998.	2.8	2

#	Article	IF	CITATIONS
145	Comparative buckling analysis of cylindrical steel silos with flat or corrugated sheets. , 2013, , 235-238.		2
146	Buckling analyses of metal cylindrical silos containing bulk solids during filling. Particulate Science and Technology, 2016, 34, 461-469.	2.1	2
147	Numerical Mesoscopic Analysis of Fracture in Fine-Grained Concrete. Archives of Civil Engineering, 2012, 58, 331-361.	0.7	1
148	Mesoscopic Modelling of Strain Localization in Plain Concrete. Springer Series in Geomechanics and Geoengineering, 2013, , 343-405.	0.1	1
149	Study of some micro-structural phenomena in granular shear zones. , 2013, , .		1
150	An elasto-plastic constitutive model with non-local softening and viscosity to describe dynamic concrete behaviour. , 2014, , 127-137.		1
151	Investigation of micro-structural phenomena at aggregate level in concretes using DEM. EPJ Web of Conferences, 2017, 140, 12008.	0.3	1
152	Limits of enhanced of macro- and meso-scale continuum models for studying size effect in concrete under tension. European Journal of Environmental and Civil Engineering, 0, , 1-22.	2.1	1
153	Large Scale Silo Tests. Springer Series in Geomechanics and Geoengineering, 2013, , 255-306.	0.1	1
154	FE Investigations of Dynamic Shear Localization in Granular Bodies within Non-local Hypoplasticity Using ALE Formulation. Springer Series in Geomechanics and Geoengineering, 2011, , 229-250.	0.1	1
155	Investigations of size effects in granular bodies during plane strain compression. World Scientific Lecture Notes in Complex Systems, 2007, , 111-139.	0.1	1
156	FE-studies on formation of shear zones in granular bodies within a polar hypoplasticity. , 2003, , .		1
157	Literature Overview. Springer Series in Geomechanics and Geoengineering, 2013, , 5-23.	0.1	1
158	Discrete Modelling of Micro-structural Phenomena in Granular Shear Zones. Springer Series in Geomechanics and Geoengineering, 2015, , 7-12.	0.1	1
159	FE-investigations of granular flow in silos using an uncoupled ALE-formulation and a non-local hypoplastic model. , 2007, , .		0
160	Theoretical Model. Springer Series in Geomechanics and Geoengineering, 2008, , 47-85.	0.1	0
161	Finite Element Calculations: Advanced Results. Springer Series in Geomechanics and Geoengineering, 2008, , 213-311.	0.1	0
162	Literature Overview on Experiments. Springer Series in Geomechanics and Geoengineering, 2008, , 11-46.	0.1	0

Jacek Tejchman

#	Article	IF	CITATIONS
163	Finite Element Calculations: Preliminary Results. Springer Series in Geomechanics and Geoengineering, 2008, , 87-211.	0.1	Ο
164	Investigations of Shear Localization during Granular Silo Flow with Non-Local Hypoplastic Constitutive Model. , 2009, , .		0
165	Comparative Modeling of Shear Localization in Granular Bodies with FEM and DEM. , 2010, , .		0
166	Continuous Approach to Concrete. Springer Series in Geomechanics and Geoengineering, 2013, , 49-93.	0.1	0
167	FE Simulations Based on Enhanced Elasto-Plasticity. Springer Series in Geomechanics and Geoengineering, 2013, , 307-389.	0.1	Ο
168	Investigations of Vortex-Structures in Granular Bodies Based on DEM and Helmholtz-Hodge Flow Field Decomposition. Springer Series in Geomechanics and Geoengineering, 2017, , 445-451.	0.1	0
169	Investigations of formation of quasi-static vortex-structures in granular bodies using DEM. EPJ Web of Conferences, 2017, 140, 03006.	0.3	Ο
170	Numerical modelling of shear localization in granular bodies using MPM and non-local hypoplasticity. AIP Conference Proceedings, 2020, , .	0.4	0
171	Modelling of Shear Zones in Granular Materials within Hypoplasticity. Lecture Notes in Computer Science, 2004, , 340-347.	1.3	0
172	Effect of Heterogeneity on Formation of Shear Zones in Granular Bodies. Lecture Notes in Computer Science, 2004, , 626-629.	1.3	0
173	Dynamic and tomography analysis of granular flow in cylindrical shell. , 2009, , 203-206.		Ο
174	Modelling of Fracture in Reinforced Concrete under Monotonic Loading. Springer Series in Geomechanics and Geoengineering, 2013, , 183-296.	0.1	0
175	Deterministic and Statistical Size Effect in Plain Concrete. Springer Series in Geomechanics and Geoengineering, 2013, , 297-341.	0.1	0
176	Model Silo Tests. Springer Series in Geomechanics and Geoengineering, 2013, , 121-253.	0.1	0
177	Continuum Models to Bulks Solids. Springer Series in Geomechanics and Geoengineering, 2013, , 85-119.	0.1	0
178	FE Analyses Based on Enhanced Hypoplasticity. Springer Series in Geomechanics and Geoengineering, 2013, , 391-453.	0.1	0
179	A Rational Approach to Stress-Dilatancy Modelling Using an Explicit Micromechanical Formulation. , 2007, , 319-340.		0
180	Shear Zone Formation in 2D Random Granular Specimens within Enhanced Hypoplasticity. , 2007, , 173-199.		0