Frank J Slack

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1563205/publications.pdf

Version: 2024-02-01

48,775 206 citations papers

2033 5896 81 h-index g-index

216 216 docs citations all docs

216 times ranked

46252 citing authors

205

#	Article	IF	CITATIONS
1	Oncomirs — microRNAs with a role in cancer. Nature Reviews Cancer, 2006, 6, 259-269.	28.4	6,509
2	The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000, 403, 901-906.	27.8	4,315
3	MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nature Reviews Drug Discovery, 2017, 16, 203-222.	46.4	3,558
4	RAS Is Regulated by the let-7 MicroRNA Family. Cell, 2005, 120, 635-647.	28.9	3,291
5	Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 2000, 408, 86-89.	27.8	2,167
6	Non-coding RNA networks in cancer. Nature Reviews Cancer, 2018, 18, 5-18.	28.4	1,359
7	Small non-coding RNAs in animal development. Nature Reviews Molecular Cell Biology, 2008, 9, 219-230.	37.0	1,270
8	The <i>let-7</i> MicroRNA Represses Cell Proliferation Pathways in Human Cells. Cancer Research, 2007, 67, 7713-7722.	0.9	1,177
9	The let-7 family of microRNAs. Trends in Cell Biology, 2008, 18, 505-516.	7.9	1,160
10	The Role of Non-coding RNAs in Oncology. Cell, 2019, 179, 1033-1055.	28.9	952
11	Integrative Analysis of the <i>Caenorhabditis elegans</i> Genome by the modENCODE Project. Science, 2010, 330, 1775-1787.	12.6	912
12	OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature, 2010, 467, 86-90.	27.8	877
13	MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nature Reviews Cancer, 2011, 11, 849-864.	28.4	870
14	MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature, 2015, 518, 107-110.	27.8	709
15	The lin-41 RBCC Gene Acts in the C. elegans Heterochronic Pathway between the let-7 Regulatory RNA and the LIN-29 Transcription Factor. Molecular Cell, 2000, 5, 659-669.	9.7	707
16	Systemic Delivery of Tumor Suppressor microRNA Mimics Using a Neutral Lipid Emulsion Inhibits Lung Tumors in Mice. Molecular Therapy, 2011, 19, 1116-1122.	8.2	610
17	A SNP in a <i>let-7</i> microRNA Complementary Site in the <i>KRAS</i> 3′ Untranslated Region Increases Non–Small Cell Lung Cancer Risk. Cancer Research, 2008, 68, 8535-8540.	0.9	609
18	OncomiR or Tumor Suppressor? The Duplicity of MicroRNAs in Cancer. Cancer Research, 2016, 76, 3666-3670.	0.9	589

#	Article	IF	CITATIONS
19	The <i>let-7 < /i>microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle, 2008, 7, 759-764.</i>	2.6	588
20	let-7 microRNAs in development, stem cells and cancer. Trends in Molecular Medicine, 2008, 14 , $400-409$.	6.7	539
21	Targeting noncoding RNAs in disease. Journal of Clinical Investigation, 2017, 127, 761-771.	8.2	527
22	mRNA circularization by METTL3–elF3h enhances translation and promotes oncogenesis. Nature, 2018, 561, 556-560.	27.8	498
23	Regression of murine lung tumors by the let-7 microRNA. Oncogene, 2010, 29, 1580-1587.	5.9	465
24	Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1695-704.	7.1	439
25	A Developmental Timing MicroRNA and Its Target Regulate Life Span in C. elegans. Science, 2005, 310, 1954-1957.	12.6	432
26	The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3'UTR. Genes and Development, 2004, 18, 132-137.	5.9	416
27	Aberrant Regulation and Function of MicroRNAs in Cancer. Current Biology, 2014, 24, R762-R776.	3.9	408
28	MicroRNAs as Potential Agents to Alter Resistance to Cytotoxic Anticancer Therapy. Cancer Research, 2007, 67, 11111-11116.	0.9	369
29	The C. elegans hunchback Homolog, hbl-1, Controls Temporal Patterning and Is a Probable MicroRNA Target. Developmental Cell, 2003, 4, 639-650.	7.0	326
30	MicroRNAs and cancer: An overview. Cell Cycle, 2008, 7, 2485-2492.	2.6	325
31	microRNA miR-196a-2 and Breast Cancer: A Genetic and Epigenetic Association Study and Functional Analysis. Cancer Research, 2009, 69, 5970-5977.	0.9	325
32	MicroRNAs and their roles in aging. Journal of Cell Science, 2012, 125, 7-17.	2.0	316
33	Junk DNA and the long non-coding RNA twist in cancer genetics. Oncogene, 2015, 34, 5003-5011.	5.9	293
34	Comparative analysis of the transcriptome across distant species. Nature, 2014, 512, 445-448.	27.8	289
35	FGF Regulates TGF-Î ² Signaling and Endothelial-to-Mesenchymal Transition via Control of let-7 miRNA Expression. Cell Reports, 2012, 2, 1684-1696.	6.4	265
36	MicroRNAs Both Promote and Antagonize Longevity in C. elegans. Current Biology, 2010, 20, 2159-2168.	3.9	264

#	Article	IF	CITATIONS
37	The Temporal Patterning MicroRNA let-7 Regulates Several Transcription Factors at the Larval to Adult Transition in C. elegans. Developmental Cell, 2005, 8, 321-330.	7.0	231
38	The mir-34 microRNA is required for the DNA damage response in vivo in C. elegans and in vitro in human breast cancer cells. Oncogene, 2009, 28, 2419-2424.	5.9	221
39	miRNA-34 Prevents Cancer Initiation and Progression in a Therapeutically Resistant K-ras and p53-Induced Mouse Model of Lung Adenocarcinoma. Cancer Research, 2012, 72, 5576-5587.	0.9	220
40	The evolution of animal microRNA function. Current Opinion in Genetics and Development, 2007, 17, 145-150.	3.3	194
41	A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer. Oncogene, 2015, 34, 3547-3555.	5.9	184
42	microRNAs: small molecules with big roles – <i>C. elegans</i> to human cancer. Biology of the Cell, 2008, 100, 71-81.	2.0	175
43	A gene required for nutritional repression of the Bacillus subtilis dipeptide permease operon. Molecular Microbiology, 2006, 15, 689-702.	2.5	172
44	MicroRNA Predictors of Longevity in Caenorhabditis elegans. PLoS Genetics, 2011, 7, e1002306.	3.5	171
45	The time of appearance of the C. elegans let-7 microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter. Developmental Biology, 2003, 259, 364-379.	2.0	170
46	Reciprocal expression of <i>lin</i> â€ <i>41</i> and the microRNAs <i>let</i> â€ <i>7</i> and <i>mir</i> â€ <i>125</i> during mouse embryogenesis. Developmental Dynamics, 2005, 234, 1046-1054.	1.8	163
47	MicroRNA in Cancer Prognosis. New England Journal of Medicine, 2008, 359, 2720-2722.	27.0	161
48	Architecture of a Validated MicroRNA::Target Interaction. Chemistry and Biology, 2004, 11, 1619-1623.	6.0	158
49	MicroRNAs in the ionizing radiation response and in radiotherapy. Current Opinion in Genetics and Development, 2013, 23, 12-19.	3.3	155
50	METTL1-mediated m7G modification of Arg-TCT tRNA drives oncogenic transformation. Molecular Cell, 2021, 81, 3323-3338.e14.	9.7	153
51	Control of developmental timing by small temporal RNAs: a paradigm for RNAâ€mediated regulation of gene expression. BioEssays, 2002, 24, 119-129.	2.5	149
52	A novel repeat domain that is often associated with RING finger and B-box motifs. Trends in Biochemical Sciences, 1998, 23, 474-475.	7.5	146
53	MicroRNAs and the cancer phenotype: profiling, signatures and clinical implications. Genome Medicine, 2013, 5, 111.	8.2	146
54	Age-associated changes in expression of small, noncoding RNAs, including microRNAs, in <i>C. elegans</i> . Rna, 2011, 17, 1804-1820.	3.5	142

#	Article	IF	CITATIONS
55	microRNA Control of Lifespan and Metabolism. Cell Cycle, 2006, 5, 837-840.	2.6	137
56	A <i>KRAS</i> -Variant in Ovarian Cancer Acts as a Genetic Marker of Cancer Risk. Cancer Research, 2010, 70, 6509-6515.	0.9	135
57	Longevity and stress in Caenorhabditis elegans. Aging, 2011, 3, 733-753.	3.1	134
58	Micro-RNAs. Journal of Cell Biology, 2002, 156, 17-22.	5.2	132
59	Combinatorial Action of MicroRNAs <i>let-7</i> and miR-34 Effectively Synergizes with Erlotinib to Suppress Non-small Cell Lung Cancer Cell Proliferation. Cell Cycle, 2015, 14, 2171-2180.	2.6	131
60	A $3\hat{a}\in^2$ -untranslated region KRAS variant and triple-negative breast cancer: a case-control and genetic analysis. Lancet Oncology, The, 2011, 12, 377-386.	10.7	130
61	miR-34a Silences c-SRC to Attenuate Tumor Growth in Triple-Negative Breast Cancer. Cancer Research, 2016, 76, 927-939.	0.9	128
62	Dynamic expression of small non-coding RNAs, including novel microRNAs and piRNAs/21U-RNAs, during Caenorhabditis elegans development. Genome Biology, 2009, 10, R54.	9.6	127
63	Epsteinâ´'Barr virus-encoded EBNA2 alters immune checkpoint PD-L1 expression by downregulating miR-34a in B-cell lymphomas. Leukemia, 2019, 33, 132-147.	7.2	126
64	Novel MicroRNAs Differentially Expressed during Aging in the Mouse Brain. PLoS ONE, 2012, 7, e40028.	2.5	125
65	An elegant miRror: microRNAs in stem cells, developmental timing and cancer. Chromosoma, 2009, 118, 405-418.	2.2	124
66	Anthranilate Fluorescence Marks a Calcium-Propagated Necrotic Wave That Promotes Organismal Death in C. elegans. PLoS Biology, 2013, 11, e1001613.	5.6	123
67	The role of microRNAs in cancer. Yale Journal of Biology and Medicine, 2006, 79, 131-40.	0.2	123
68	Expression and Function of Members of a Divergent Nuclear Receptor Family in Caenorhabditis elegans. Developmental Biology, 1999, 215, 314-331.	2.0	122
69	The let-7 microRNA target gene, Mlin41/Trim71 is required for mouse embryonic survival and neural tube closure. Cell Cycle, 2008, 7, 3935-3942.	2.6	120
70	The multiple roles of microRNA-155 in oncogenesis. Journal of Clinical Bioinformatics, 2013, 3, 17.	1.2	112
71	Challenges identifying efficacious miRNA therapeutics for cancer. Expert Opinion on Drug Discovery, 2020, 15, 987-991.	5.0	111
72	MicroRNAs: tools for cancer diagnostics. Gut, 2009, 58, 1546-1554.	12.1	110

#	Article	IF	CITATIONS
73	Inhibition of hypoxia-induced miR-155 radiosensitizes hypoxic lung cancer cells. Cancer Biology and Therapy, 2011, 12, 908-914.	3.4	108
74	TEMPORAL PATTERN FORMATION BY HETEROCHRONIC GENES. Annual Review of Genetics, 1997, 31, 611-634.	7.6	106
75	The expression of the Alzheimer's amyloid precursor protein-like gene is regulated by developmental timing microRNAs and their targets in Caenorhabditis elegans. Developmental Biology, 2008, 315, 418-425.	2.0	101
76	MicroRNA signatures differentiate melanoma subtypes. Cell Cycle, 2011, 10, 1845-1852.	2.6	98
77	Autofluorescence as a measure of senescence in C. elegans: look to red, not blue or green. Aging, 2016, 8, 889-898.	3.1	95
78	miRNA modulation of the cellular stress response. Future Oncology, 2008, 4, 289-298.	2.4	86
79	MicroRNAs and the Genetic Network in Aging. Journal of Molecular Biology, 2013, 425, 3601-3608.	4.2	86
80	Epstein-Barr virus-mediated dysregulation of human microRNA expression. Cell Cycle, 2008, 7, 3595-3600.	2.6	85
81	A truth serum for cancer â€" microRNAs have major potential as cancer biomarkers. Cell Research, 2008, 18, 983-984.	12.0	84
82	microRNA-Mediated Silencing Inside P Bodies. RNA Biology, 2006, 3, 97-100.	3.1	83
83	miR-155 Is Essential for Inflammation-Induced Hippocampal Neurogenic Dysfunction. Journal of Neuroscience, 2015, 35, 9764-9781.	3.6	83
84	RNA-mediated gene activation. Epigenetics, 2014, 9, 27-36.	2.7	82
85	The tumor-suppressive and potential therapeutic functions of miR-34a in epithelial carcinomas. Expert Opinion on Therapeutic Targets, 2016, 20, 737-753.	3.4	82
86	Cobomarsen, an Oligonucleotide Inhibitor of miR-155, Slows DLBCL Tumor Cell Growth <i>In Vitro</i> and <i>In Vivo</i> . Clinical Cancer Research, 2021, 27, 1139-1149.	7.0	76
87	The Caenorhabditis elegans pumilio homolog, puf-9, is required for the 3′UTR-mediated repression of the let-7 microRNA target gene, hbl-1. Developmental Biology, 2007, 305, 551-563.	2.0	74
88	MicroRNAs as a potential magic bullet in cancer. Future Oncology, 2006, 2, 73-82.	2.4	72
89	MicroRNAs Mediate Dietary-Restriction-Induced Longevity through PHA-4/FOXA and SKN-1/Nrf Transcription Factors. Current Biology, 2014, 24, 2238-2246.	3.9	72
90	A KRAS variant is a biomarker of poor outcome, platinum chemotherapy resistance and a potential target for therapy in ovarian cancer. Oncogene, 2012, 31, 4559-4566.	5.9	71

#	Article	IF	Citations
91	MicroRNAs in Mutagenesis, Genomic Instability, and DNA Repair. Seminars in Oncology, 2011, 38, 743-751.	2.2	68
92	Personalized RNA Medicine for Pancreatic Cancer. Clinical Cancer Research, 2018, 24, 1734-1747.	7.0	67
93	<i>Let-7</i> microRNA as a potential therapeutic target with implications for immunotherapy. Expert Opinion on Therapeutic Targets, 2018, 22, 929-939.	3.4	67
94	MicroRNA-34a: Potent Tumor Suppressor, Cancer Stem Cell Inhibitor, and Potential Anticancer Therapeutic. Frontiers in Cell and Developmental Biology, 2021, 9, 640587.	3.7	67
95	Analysis of microRNA Expression and Function. Methods in Cell Biology, 2011, 106, 219-252.	1.1	66
96	Developmental Timing in C. elegans Is Regulated by kin-20 and tim-1, Homologs of Core Circadian Clock Genes. Developmental Cell, 2005, 8, 287-295.	7.0	64
97	miR-155 as a novel clinical target for hematological malignancies. Carcinogenesis, 2020, 41, 2-7.	2.8	63
98	Prediction and characterization of noncoding RNAs in C. elegans by integrating conservation, secondary structure, and high-throughput sequencing and array data. Genome Research, 2011, 21, 276-285.	5.5	60
99	ADAR1-mediated RNA editing is a novel oncogenic process in thyroid cancer and regulates miR-200 activity. Oncogene, 2020, 39, 3738-3753.	5.9	60
100	A serum miRNA profile of human longevity: findings from the Baltimore Longitudinal Study of Aging (BLSA). Aging, 2016, 8, 2971-2987.	3.1	60
101	miR-34 activity is modulated through 5′-end phosphorylation in response to DNA damage. Nature Communications, 2016, 7, 10954.	12.8	58
102	Quantitative analysis of microRNAs in tissue microarrays by in situ hybridization. BioTechniques, 2012, 52, 235-245.	1.8	57
103	Malicious exosomes. Science, 2014, 346, 1459-1460.	12.6	57
104	miR-147b-mediated TCA cycle dysfunction and pseudohypoxia initiate drug tolerance to EGFR inhibitors in lung adenocarcinoma. Nature Metabolism, 2019, 1, 460-474.	11.9	57
105	The Nefarious Nexus of Noncoding RNAs in Cancer. International Journal of Molecular Sciences, 2018, 19, 2072.	4.1	55
106	Ageing and the small, non-coding RNA world. Ageing Research Reviews, 2013, 12, 429-435.	10.9	54
107	The let-7 microRNA interfaces extensively with the translation machinery to regulate cell differentiation. Cell Cycle, 2008, 7, 3083-3090.	2.6	53
108	MicroRNA therapeutics in preclinical cancer models. Lancet Oncology, The, 2011, 12, 319-321.	10.7	52

#	Article	IF	CITATIONS
109	Hypomethylating agent alters the immune microenvironment in acute myeloid leukaemia (AML) and enhances the immunogenicity of a dendritic cell/AML vaccine. British Journal of Haematology, 2019, 185, 679-690.	2.5	52
110	A Developmental Timing Switch Promotes Axon Outgrowth Independent of Known Guidance Receptors. PLoS Genetics, 2010, 6, e1001054.	3.5	51
111	The long noncoding RNA H19 regulates tumor plasticity in neuroendocrine prostate cancer. Nature Communications, 2021, 12, 7349.	12.8	51
112	The Duality of OncomiR Addiction in the Maintenance and Treatment of Cancer. Cancer Journal (Sudbury, Mass), 2012, 18, 232-237.	2.0	48
113	Canonical and Non-Canonical Barriers Facing AntimiR Cancer Therapeutics. Current Medicinal Chemistry, 2013, 20, 3582-3593.	2.4	48
114	Transcription of the C. elegans let-7 microRNA is temporally regulated by one of its targets, hbl-1. Developmental Biology, 2009, 334, 523-534.	2.0	46
115	Developmental biomarkers of aging in <i>Caenorhabditis elegans</i> . Developmental Dynamics, 2010, 239, 1306-1314.	1.8	46
116	Autoregulation of <i>lin-4</i> microRNA transcription by RNA activation (RNAa) in <i>C. elegans</i> Cell Cycle, 2014, 13, 772-781.	2.6	43
117	Joint analysis of expression profiles from multiple cancers improves the identification of microRNA–gene interactions. Bioinformatics, 2013, 29, 2137-2145.	4.1	42
			·
118	Noncoding RNAs and Cancer. Cell, 2013, 153, 9-10.	28.9	40
118	Noncoding RNAs and Cancer. Cell, 2013, 153, 9-10. MicroRNAs circulate around Alzheimer's disease. Genome Biology, 2013, 14, 125.	8.8	40
119	MicroRNAs circulate around Alzheimer's disease. Genome Biology, 2013, 14, 125. Extensive sequence variation in the 3′ untranslated region of the⟨i⟩KRAS⟨/i⟩gene in lung and ovarian	8.8	40
119	MicroRNAs circulate around Alzheimer's disease. Genome Biology, 2013, 14, 125. Extensive sequence variation in the 3′ untranslated region of the⟨i⟩KRAS⟨/i⟩gene in lung and ovarian cancer cases. Cell Cycle, 2014, 13, 1030-1040. A novel mechanism of LIN-28 regulation oflet-7microRNA expression revealed by in vivo HITS-CLIP inC.	8.8	40 39
119 120 121	MicroRNAs circulate around Alzheimer's disease. Genome Biology, 2013, 14, 125. Extensive sequence variation in the 3′ untranslated region of the⟨i⟩KRAS⟨/i⟩gene in lung and ovarian cancer cases. Cell Cycle, 2014, 13, 1030-1040. A novel mechanism of LIN-28 regulation oflet-7microRNA expression revealed by in vivo HITS-CLIP inC. elegans. Rna, 2015, 21, 985-996. Hydrophobically Modified let-7b miRNA Enhances Biodistribution to NSCLC and Downregulates HMGA2	8.8 2.6 3.5	40 39 39
119 120 121 122	MicroRNAs circulate around Alzheimer's disease. Genome Biology, 2013, 14, 125. Extensive sequence variation in the 3′ untranslated region of the⟨i⟩KRAS⟨/i⟩ gene in lung and ovarian cancer cases. Cell Cycle, 2014, 13, 1030-1040. A novel mechanism of LIN-28 regulation oflet-7microRNA expression revealed by in vivo HITS-CLIP inC. elegans. Rna, 2015, 21, 985-996. Hydrophobically Modified let-7b miRNA Enhances Biodistribution to NSCLC and Downregulates HMGA2 InÂVivo. Molecular Therapy - Nucleic Acids, 2020, 19, 267-277. ⟨i⟩kin-19/casein kinase lα⟨/i⟩has dual functions in regulating asymmetric division and terminal	8.8 2.6 3.5 5.1	40 39 39 39
119 120 121 122	MicroRNAs circulate around Alzheimer's disease. Genome Biology, 2013, 14, 125. Extensive sequence variation in the 3′ untranslated region of the⟨i⟩KRAS⟨/i⟩gene in lung and ovarian cancer cases. Cell Cycle, 2014, 13, 1030-1040. A novel mechanism of LIN-28 regulation oflet-7microRNA expression revealed by in vivo HITS-CLIP inC. elegans. Rna, 2015, 21, 985-996. Hydrophobically Modified let-7b miRNA Enhances Biodistribution to NSCLC and Downregulates HMGA2 InÂVivo. Molecular Therapy - Nucleic Acids, 2020, 19, 267-277. ⟨i⟩kin-19/casein kinase lα⟨/i⟩has dual functions in regulating asymmetric division and terminal differentiation in⟨i⟩C. elegans⟨/i⟩epidermal stem cells. Cell Cycle, 2010, 9, 4748-4765. The nuclear receptor gene nhr-25 plays multiple roles in the Caenorhabditis elegans heterochronic	8.8 2.6 3.5 5.1	4039393937

#	Article	lF	Citations
127	The role of microRNAs in synaptic development and function. BMB Reports, 2009, 42, 131-135.	2.4	36
128	Targetome Profiling, Pathway Analysis and Genetic Association Study Implicate miR-202 in Lymphomagenesis. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 327-336.	2.5	35
129	Next generation miRNA inhibition using short anti-seed PNAs encapsulated in PLGA nanoparticles. Journal of Controlled Release, 2020, 327, 406-419.	9.9	35
130	And Now Introducing Mammalian Mirtrons. Developmental Cell, 2007, 13, 605-607.	7.0	34
131	miR-105-5p regulates PD-L1 expression and tumor immunogenicity in gastric cancer. Cancer Letters, 2021, 518, 115-126.	7.2	34
132	A Variant in a MicroRNA complementary site in the $3\hat{a}\in^2$ UTR of the KIT oncogene increases risk of acral melanoma. Oncogene, 2011, 30, 1542-1550.	5.9	33
133	Cigarette-Smoke-Induced Dysregulation of MicroRNA Expression and Its Role in Lung Carcinogenesis. Pulmonary Medicine, 2012, 2012, 1-9.	1.9	33
134	ADAR1 and its implications in cancer development and treatment. Trends in Genetics, 2022, 38, 821-830.	6.7	33
135	Potential microRNA therapies targeting Ras, NFkappaB and p53 signaling. Current Opinion in Molecular Therapeutics, 2010, 12, 147-57.	2.8	32
136	Inhibiting microRNA function in vivo. Nature Methods, 2009, 6, 37-38.	19.0	31
137	siRNA. Chemistry and Biology, 2002, 9, 1053-1055.	6.0	30
138	Identification of specific <i>let-7</i> microRNA binding complexes in <i>Caenorhabditis elegans</i> Rna, 2008, 14, 2104-2114.	3.5	26
139	MicroRNA-mediated regulation of KRAS in cancer. Journal of Hematology and Oncology, 2014, 7, 84.	17.0	26
140	Expression inactivation of SMARCA4 by microRNAs in lung tumors. Human Molecular Genetics, 2015, 24, 1400-1409.	2.9	26
141	MicroRNAs in Search of a Target. Cold Spring Harbor Symposia on Quantitative Biology, 2006, 71, 129-134.	1.1	24
142	Biases and Errors on Allele Frequency Estimation and Disease Association Tests of Nextâ€Generation Sequencing of Pooled Samples. Genetic Epidemiology, 2012, 36, 549-560.	1.3	24
143	Targeted resequencing of the microRNAome and 3′UTRome reveals functional germline DNA variants with altered prevalence in epithelial ovarian cancer. Oncogene, 2015, 34, 2125-2137.	5.9	24
144	KRAS alleles: The LCS6 3′UTR variant and KRAS coding sequence mutations in the NCI-60 panel. Cell Cycle, 2012, 11, 361-366.	2.6	23

#	Article	IF	CITATIONS
145	Ribosomal protein RPS-14 modulates let-7 microRNA function in Caenorhabditis elegans. Developmental Biology, 2009, 334, 152-160.	2.0	22
146	An ADAR1-dependent RNA editing event in the cyclin-dependent kinase CDK13 promotes thyroid cancer hallmarks. Molecular Cancer, 2021, 20, 115.	19.2	22
147	The age of high-throughput microRNA profiling. Nature Methods, 2004, 1, 106-107.	19.0	21
148	<i>C. elegans sym-1</i> is a downstream target of the Hunchback-like-1 developmental timing transcription factor. Cell Cycle, 2009, 8, 4147-4154.	2.6	21
149	Prevention of K-Ras- and Pten-mediated intravaginal tumors by treatment with camptothecin-loaded PLGA nanoparticles. Drug Delivery and Translational Research, 2011, 1, 383-394.	5.8	21
150	In this issue ofEpigenetics. Epigenetics, 2014, 9, 1-2.	2.7	21
151	miR-155 drives oncogenesis by promoting and cooperating with mutations in the c-Kit oncogene. Oncogene, 2019, 38, 2151-2161.	5.9	21
152	Spatially resolved and multiplexed MicroRNA quantification from tissue using nanoliter well arrays. Microsystems and Nanoengineering, 2020, 6, 51.	7.0	21
153	Micromanagement: A Role for MicroRNAs in mRNA Stability. ACS Chemical Biology, 2006, 1, 132-134.	3.4	20
154	Transcriptional control of microRNA expression in <i>C. elegans</i> Promoting better understanding. RNA Biology, 2009, 6, 49-53.	3.1	20
155	Overexpression of miR-9 in the Nucleus Accumbens Increases Oxycodone Self-Administration. International Journal of Neuropsychopharmacology, 2019, 22, 383-393.	2.1	20
156	RACK-1 regulateslet-7microRNA expression and terminal cell differentiation inCaenorhabditis elegans. Cell Cycle, 2014, 13, 1995-2009.	2.6	19
157	Nonfouling, Encoded Hydrogel Microparticles for Multiplex MicroRNA Profiling Directly from Formalin-Fixed, Paraffin-Embedded Tissue. Analytical Chemistry, 2018, 90, 10279-10285.	6.5	19
158	Photodynamic Therapy for Pancreatic Ductal Adenocarcinoma. Cancers, 2021, 13, 4354.	3.7	18
159	Sex-Dependent Changes in miRNA Expression in the Bed Nucleus of the Stria Terminalis Following Stress. Frontiers in Molecular Neuroscience, 2019, 12, 236.	2.9	17
160	Human nuclear RNAi-defective 2 (NRDE2) is an essential RNA splicing factor. Rna, 2019, 25, 352-363.	3.5	15
161	Tumor penetrating nanomedicine targeting both an oncomiR and an oncogene in pancreatic cancer. Oncotarget, 2019, 10, 5349-5358.	1.8	15
162	MicroRNAs Regulate Expression of Oncogenes. Clinical Chemistry, 2013, 59, 325-326.	3.2	14

#	Article	IF	CITATIONS
163	Tackling Tumors with Small RNAs Derived from Transfer RNA. New England Journal of Medicine, 2018, 378, 1842-1843.	27.0	14
164	Therapeutic Potential of Chemically Modified, Synthetic, Triplex Peptide Nucleic Acid–Based Oncomir Inhibitors for Cancer Therapy. Cancer Research, 2021, 81, 5613-5624.	0.9	14
165	A High-Throughput Small Molecule Screen Identifies Ouabain as Synergistic with miR-34a in Killing Lung Cancer Cells. IScience, 2020, 23, 100878.	4.1	13
166	Photodestruction of Stromal Fibroblasts Enhances Tumor Response to PDT in 3D Pancreatic Cancer Coculture Models. Photochemistry and Photobiology, 2021, 97, 416-426.	2.5	13
167	Genome-wide CRISPR interference screen identifies long non-coding RNA loci required for differentiation and pluripotency. PLoS ONE, 2021, 16, e0252848.	2.5	12
168	A 'pivotal' new rule for microRNA-mRNA interactions. Nature Structural and Molecular Biology, 2012, 19, 265-266.	8. 2	11
169	Estrogen withdrawal, increased breast cancer risk and the KRAS-variant. Cell Cycle, 2015, 14, 2091-2099.	2.6	11
170	MicroRNAs and Cancer. , 2017, , 277-286.		11
171	Quantitative and multiplex microRNA assays from unprocessed cells in isolated nanoliter well arrays. Lab on A Chip, 2018, 18, 2410-2424.	6.0	11
172	Big roles for small RNAs. Nature, 2010, 463, 616-616.	27.8	10
173	The POU transcription factor UNCâ€86 controls the timing and ventral guidance of <i>Caenorhabditis elegans</i> axon growth. Developmental Dynamics, 2011, 240, 1815-1825.	1.8	10
174	Arresting the Culprit: Targeted Antagomir Delivery to Sequester Oncogenic miR-221 in HCC. Molecular Therapy - Nucleic Acids, 2012, 1, e12.	5.1	10
175	A role for miR-34 in colon cancer stem cell homeostasis. Stem Cell Investigation, 2016, 3, 42-42.	3.0	9
176	ADARs Edit MicroRNAs to Promote Leukemic Stem Cell Activity. Cell Stem Cell, 2016, 19, 141-142.	11.1	9
177	Dual DNA and protein tagging of open chromatin unveils dynamics of epigenomic landscapes in leukemia. Nature Methods, 2021, 18, 293-302.	19.0	9
178	MicroRNAs circulate around Alzheimer's disease. Genome Biology, 2013, 14, 125.	9.6	9
179	<i>Cis</i> -acting elements in its 3′ UTR mediate post-transcriptional regulation of <i>KRAS</i> . Oncotarget, 2016, 7, 11770-11784.	1.8	9
180	TRIM71 binds to IMP1 and is capable of positive and negative regulation of target RNAs. Cell Cycle, 2020, 19, 2314-2326.	2.6	8

#	Article	IF	CITATIONS
181	Formulation of PLGA nanoparticles containing short cationic peptide nucleic acids. MethodsX, 2020, 7, 101115.	1.6	8
182	Epstein-Barr virus: From kisses to cancer, an ingenious immune evader. Oncotarget, 2018, 9, 36411-36412.	1.8	8
183	Transcriptome Profiling of <i> ADAR1 < /i > Targets in Triple-Negative Breast Cancer Cells Reveals Mechanisms for Regulating Growth and Invasion. Molecular Cancer Research, 2022, 20, 960-971.</i>	3.4	8
184	MicroRNAs Micromanage Themselves. Circulation Research, 2012, 111, 1395-1397.	4.5	7
185	The Role of LncRNAs in Uveal Melanoma. Cancers, 2021, 13, 4041.	3.7	7
186	MicroRNA-21 guide and passenger strand regulation of adenylosuccinate lyase-mediated purine metabolism promotes transition to an EGFR-TKI-tolerant persister state. Cancer Gene Therapy, 2022, 29, 1878-1894.	4.6	6
187	Cellular microRNA-127-3p suppresses oncogenic herpesvirus-induced transformation and tumorigenesis via down-regulation of SKP2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	5
188	<i>KRAS</i> rs61764370 in Epithelial Ovarian Cancer–Letter. Clinical Cancer Research, 2011, 17, 6600-6600.	7.0	4
189	MiR-33 connects cholesterol to the cell cycle. Cell Cycle, 2012, 11, 1060-1061.	2.6	4
190	lin-4 and the NRDE pathway are required to activate a transgenic lin-4 reporter but not the endogenous lin-4 locus in C. elegans. PLoS ONE, 2018, 13, e0190766.	2.5	4
191	Generation of Mouse Lung Epithelial Cells. Bio-protocol, 2013, 3, .	0.4	4
192	Temporal and spatial patterning of an organ by a single transcription factor. Genome Biology, 2005, 6, 205.	9.6	3
193	<i>acn-1</i> , a <i>C. elegans</i> homologue of <i>ACE</i> , genetically interacts with the <i>let-7</i> microRNA and other heterochronic genes. Cell Cycle, 2017, 16, 1800-1809.	2.6	3
194	Multi-layered control of PD-L1 expression in Epstein-Barr virus-associated gastric cancer. Journal of Cancer Metastasis and Treatment, 2020, 2020, .	0.8	3
195	The SWI/SNF complex regulates the expression of miR-222, a tumor suppressor microRNA in lung adenocarcinoma. Human Molecular Genetics, 2021, 30, 2263-2271.	2.9	2
196	Robust and specific inhibition of microRNAs in Caenorhabditis elegans. Journal of Biology, 2010, 9, 20.	2.7	1
197	Association between KRAS rs61764370 and triple-negative breast cancerâ€"a false positive? â€" Authors' reply. Lancet Oncology, The, 2011, 12, 724.	10.7	1
198	Small RNAs Deliver a Blow to Ovarian Cancer. Cancer Discovery, 2013, 3, 1220-1221.	9.4	1

#	Article	lF	CITATIONS
199	Statistical issues in binding site identification through CLIP-seq. Statistics and Its Interface, 2015, 8, 419-436.	0.3	1
200	MUC1-C Inhibition Leads to Decrease in PD-L1 Levels Via up-Regulation of Micro RNAs. Blood, 2016, 128, 2871-2871.	1.4	1
201	Single Nucleotide Polymorphisms in MicroRNAs and MicroRNA Binding Sites with Roles in Cancer. Modecular Medicine and Medicinal, 2010, , 197-211.	0.4	O
202	Discovery of Novel microRNAs in Aging Caenorhabditis elegans. Methods in Molecular Biology, 2015, 1343, 235-248.	0.9	0
203	Extracellular vesicles show promise for cancer theranostics. Annals of Translational Medicine, 2019, 7, 158-158.	1.7	0
204	Abstract 2392: Transcriptome analysis from a linear melanoma progression model reveals lncRNAs involved with malignancy, EMT and metastasis. , 2021, , .		0
205	The microRNAs of Caenorhabditis elegans. , 2009, , 89-99.		0
206	Photodynamic stromal depletion (PSD) improves tumor response to PDT and enhances nanoparticle drug delivery in 3D co-culture models of pancreatic ductal adenocarcinoma (PDAC)., 2022,,.		0