
Angelo Leone Lombardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1562750/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nature Biotechnology, 2007, 25, 1298-1306.	17.5	797
2	Targeted genome editing in human repopulating haematopoietic stem cells. Nature, 2014, 510, 235-240.	27.8	517
3	An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nature Biotechnology, 2011, 29, 816-823.	17.5	488
4	Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nature Medicine, 2012, 18, 807-815.	30.7	398
5	Inheritable Silencing of Endogenous Genes by Hit-and-Run Targeted Epigenetic Editing. Cell, 2016, 167, 219-232.e14.	28.9	363
6	Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nature Methods, 2011, 8, 861-869.	19.0	300
7	A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood, 2007, 110, 4144-4152.	1.4	246
8	Efficient Gene Delivery and Targeted Expression to HepatocytesIn Vivoby Improved Lentiviral Vectors. Human Gene Therapy, 2002, 13, 243-260.	2.7	230
9	Targeting lentiviral vector expression to hepatocytes limits transgene-specific immune response and establishes long-term expression of human antihemophilic factor IX in mice. Blood, 2004, 103, 3700-3709.	1.4	206
10	Preclinical modeling highlights the therapeutic potential of hematopoietic stem cell gene editing for correction of SCID-X1. Science Translational Medicine, 2017, 9, .	12.4	176
11	The first reported generation of several induced pluripotent stem cell lines from homozygous and heterozygous Huntington's disease patients demonstrates mutation related enhanced lysosomal activity. Neurobiology of Disease, 2012, 46, 41-51.	4.4	159
12	Genomic instability in induced stem cells. Cell Death and Differentiation, 2011, 18, 745-753.	11.2	138
13	iPSC-derived neural precursors exert a neuroprotective role in immune-mediated demyelination via the secretion of LIF. Nature Communications, 2013, 4, 2597.	12.8	104
14	T-cell defects in patients with ARPC1B germline mutations account for combined immunodeficiency. Blood, 2018, 132, 2362-2374.	1.4	99
15	TRPML1 links lysosomal calcium to autophagosome biogenesis through the activation of the CaMKKβ/VPS34 pathway. Nature Communications, 2019, 10, 5630.	12.8	96
16	Loss of transcriptional control over endogenous retroelements during reprogramming to pluripotency. Genome Research, 2014, 24, 1251-1259.	5.5	94
17	Lentiviral gene transfer and ex vivo expansion of human primitive stem cells capable of primary, secondary, and tertiary multilineage repopulation in NOD/SCID mice. Blood, 2002, 100, 4391-4400.	1.4	84
18	Gene Therapy for a Mucopolysaccharidosis Type I Murine Model with Lentiviral-IDUA Vector. Human Gene Therapy, 2005, 16, 81-90.	2.7	72

Angelo Leone Lombardo

#	Article	IF	CITATIONS
19	NY-ESO-1 TCR single edited stem and central memory T cells to treat multiple myeloma without graft-versus-host disease. Blood, 2017, 130, 606-618.	1.4	71
20	Targeted gene therapy and cell reprogramming in <scp>F</scp> anconi anemia. EMBO Molecular Medicine, 2014, 6, 835-848.	6.9	66
21	Therapeutic gene editing in <scp>CD</scp> 34 ⁺ hematopoietic progenitors from Fanconi anemia patients. EMBO Molecular Medicine, 2017, 9, 1574-1588.	6.9	54
22	Targeted Gene Addition in Human Epithelial Stem Cells by Zinc-finger Nuclease-mediated Homologous Recombination. Molecular Therapy, 2013, 21, 1695-1704.	8.2	53
23	Limited Transgene Immune Response and Long-Term Expression of Humanα-L-Iduronidase in Young Adult Mice with Mucopolysaccharidosis Type I by Liver-Directed Gene Therapy. Human Gene Therapy, 2006, 17, 1112-1121.	2.7	48
24	Patient-Specific iPSC-Derived Endothelial Cells Provide Long-Term Phenotypic Correction of Hemophilia A. Stem Cell Reports, 2018, 11, 1391-1406.	4.8	46
25	Genome editing for scalable production of alloantigenâ€free lentiviral vectors for <i>inÂvivo</i> geneÂtherapy. EMBO Molecular Medicine, 2017, 9, 1558-1573.	6.9	41
26	IL-10-Engineered Human CD4+ Tr1 Cells Eliminate Myeloid Leukemia in an HLA Class I-Dependent Mechanism. Molecular Therapy, 2017, 25, 2254-2269.	8.2	40
27	The immune response to lentiviral-delivered transgene is modulated in vivo by transgene-expressing antigen-presenting cells but not by CD4+CD25+ regulatory T cells. Blood, 2007, 110, 1788-1796.	1.4	35
28	DNA damage contributes to neurotoxic inflammation in Aicardi-Goutières syndrome astrocytes. Journal of Experimental Medicine, 2022, 219, .	8.5	35
29	Gene Modification and Three-Dimensional Scaffolds as Novel Tools to Allow the Use of Postnatal Thymic Epithelial Cells for Thymus Regeneration Approaches. Stem Cells Translational Medicine, 2019, 8, 1107-1122.	3.3	31
30	Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of nextâ€generation human artificial chromosomes for Duchenne muscular dystrophy. EMBO Molecular Medicine, 2018, 10, 254-275.	6.9	30
31	Genome Editing: A Tool For Research and Therapy: Targeted genome editing hits the clinic. Nature Medicine, 2014, 20, 1101-1103.	30.7	22
32	Galectin-3 in Prostate Cancer Stem-Like Cells Is Immunosuppressive and Drives Early Metastasis. Frontiers in Immunology, 2020, 11, 1820.	4.8	22
33	Targeted Gene Correction in Osteopetrotic-Induced Pluripotent Stem Cells for the Generation of Functional Osteoclasts. Stem Cell Reports, 2015, 5, 558-568.	4.8	21
34	Laboratory-Scale Lentiviral Vector Production and Purification for Enhanced ExÂVivo and InÂVivo Genetic Engineering. Molecular Therapy - Methods and Clinical Development, 2020, 19, 411-425.	4.1	21
35	Leukocytes recruited by tumor-derived HMGB1 sustain peritoneal carcinomatosis. Oncolmmunology, 2016, 5, e1122860.	4.6	20
36	Lentiviral correction of enzymatic activity restrains macrophage inflammation in adenosine deaminase 2 deficiency. Blood Advances, 2021, 5, 3174-3187.	5.2	18

#	Article	IF	CITATIONS
37	In vitrogene therapy of mucopolysaccharidosis type I by lentiviral vectors. FEBS Journal, 2002, 269, 2764-2771.	0.2	15
38	Choice architecture-based prescribing tool for TB preventive therapy: a pilot study in South Africa. Public Health Action, 2020, 10, 118-123.	1.2	3
39	481. Targeted Genome Editing in Mouse Hematopoietic Stem/Progenitor Cells (HSPC) To Model Gene Correction of SCID-X1. Molecular Therapy, 2015, 23, S191.	8.2	2
40	130. Purification of Large Scale mRNA Encoding ZFN Nucleases by dHPLC Technology. Molecular Therapy, 2016, 24, S53-S54.	8.2	2
41	Deletion of a pseudogene within a fragile site triggers the oncogenic expression of the mitotic CCSER1 gene. Life Science Alliance, 2021, 4, e202101019.	2.8	2
42	738. Towards Gene Correction of X-Linked SCID Using Engineered Zinc Finger Nucleases and Integrase Defective Lentiviral Delivery. Molecular Therapy, 2006, 13, S285.	8.2	1
43	42. Correction of SCID-X1 by Targeted Genome Editing of Hematopoietic Stem/Progenitor Cells (HSPC) in the Mouse Model. Molecular Therapy, 2016, 24, S18-S19.	8.2	1
44	729. Inheritable Silencing of Endogenous Gene by Hit-and-Run Targeted Epigenetic Editing. Molecular Therapy, 2016, 24, S287-S288.	8.2	1
45	TCR Gene Editing Results in Effective Immunotherapy of Leukemia without the Development of GvHD. Blood, 2011, 118, 667-667.	1.4	1
46	Choice architecture-based prescribing tool for TB preventive therapy: a pilot study in South Africa. Public Health Action, 2020, 10, 118-123.	1.2	1
47	1003. Targeted Site-Specific Integration in Human Cells Using Designed Zinc Finger Nucleases. Molecular Therapy, 2006, 13, S386-S387.	8.2	0
48	981. Prevention of Transgene Expression in Antigen Presenting Cells Correlate with Modulated Immune Response after In Vivo Gene Transfer. Molecular Therapy, 2006, 13, S377-S378.	8.2	0
49	6. Targeted Genome Editing of Cell Lines for Improved and Scalable Production of Lentiviral Vectors for Human Gene Therapy. Molecular Therapy, 2015, 23, S3.	8.2	0
50	179. Correcting the Bleeding Phenotype in Hemophilia Ausing Lentivirally FVIII-Corrected Endothelial Cells Differentiated from Hemophilic Induced Pluripotent Stem Cell (iPSC). Molecular Therapy, 2015, 23, S71-S72.	8.2	0
51	686. Gene Correction of IL2RG in Human Hematopoietic Stem and Progenitor Cells. Molecular Therapy, 2015, 23, S273.	8.2	0
52	209. TCR Gene Editing in a Single Step of T Cell Activation To Redirect T Cell Specificity and Prevent GvHD. Molecular Therapy, 2015, 23, S82-S83.	8.2	0
53	690. Permanent Epigenetic Silencing of Human Genes With Artificial Transcriptional Repressors. Molecular Therapy, 2015, 23, S275.	8.2	0
54	Reversible immortalization allows human artificial chromosome-mediated gene correction of human dystrophic muscle progenitor cells. Neuromuscular Disorders, 2015, 25, 8252.	0.6	0

Angelo Leone Lombardo

#	Article	IF	CITATIONS
55	37. Towards Clinical Translation of Hematopoietic Stem Cell Gene Editing for the Correction of SCID-X1 Mutations. Molecular Therapy, 2016, 24, S16-S17.	8.2	0
56	637. Targeting of Myeloid Leukemia by IL-10-Engineered Human CD4+ Tr1 Cells. Molecular Therapy, 2016, 24, S252.	8.2	0
57	752. Single Chain TCR Gene Editing in Adoptive Cell Therapy for Multiple Myeloma. Molecular Therapy, 2016, 24, S297.	8.2	0
58	286. Genome Editing of Inducible Cell Lines for Scalable Production of Improved Lentiviral Vectors for Human Gene Therapy. Molecular Therapy, 2016, 24, S115.	8.2	0
59	558. Targeted Gene Therapy in CD34+ Cells from Healthy Donors and Fanconi Anemia Patients. Molecular Therapy, 2016, 24, S223.	8.2	0
60	Limited Transgene Immune Response and Long-Term Expression of Human ?-L-Iduronidase in Young Adult Mice with Mucopolysaccharidosis Type I by Liver-Directed Gene Therapy. Human Gene Therapy, 2006, .	2.7	0
61	T Cell Receptor Gene Transfer into Naive and Central Memory Lymphocytes by Lentiviral Vectors for a Safe and Effective Adoptive Immune Therapy of Leukemia. Blood, 2008, 112, 3529-3529.	1.4	0
62	Abstract 2937: Editing central memory T lymphocyte specificity for safe and effective adoptive immunotherapy of leukemia. , 2010, , .		0
63	Editing Human Lymphocyte Specificity for Safe and Effective Adoptive Immunotherapy of Leukemia Blood, 2010, 116, 3764-3764.	1.4	0
64	TCR Gene Editing Achieved In a Single Round Of T Cell Activation Is Sufficient To Redirect T Cell Specificity and Prevent GvHD. Blood, 2013, 122, 2898-2898.	1.4	0
65	NY-ESO-1 Single Edited T Cells to Treat Multiple Myeloma without Inducing GvHD. Blood, 2014, 124, 308-308	1.4	0