Martin Eklund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/15625/publications.pdf

Version: 2024-02-01

98 papers 4,587 citations

201385 27 h-index 62 g-index

103 all docs

103
docs citations

103 times ranked

6814 citing authors

#	Article	IF	CITATIONS
1	Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nature Genetics, 2018, 50, 928-936.	9.4	652
2	Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. Lancet Oncology, The, 2020, 21, 222-232.	5.1	364
3	Factors contributing to healthcare professional burnout during the COVID-19 pandemic: A rapid turnaround global survey. PLoS ONE, 2020, 15, e0238217.	1.1	349
4	Prostate cancer screening in men aged 50–69 years (STHLM3): a prospective population-based diagnostic study. Lancet Oncology, The, 2015, 16, 1667-1676.	5.1	308
5	Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nature Genetics, 2021, 53, 65-75.	9.4	264
6	MRI-Targeted or Standard Biopsy in Prostate Cancer Screening. New England Journal of Medicine, 2021, 385, 908-920.	13.9	184
7	Breast Cancer Screening in the Precision Medicine Era: Risk-Based Screening in a Population-Based Trial. Journal of the National Cancer Institute, 2017, 109, djw290.	3.0	171
8	Comparison Between the Four-kallikrein Panel and Prostate Health Index for Predicting Prostate Cancer. European Urology, 2015, 68, 139-146.	0.9	156
9	External Evaluation of 3 Commercial Artificial Intelligence Algorithms for Independent Assessment of Screening Mammograms. JAMA Oncology, 2020, 6, 1581.	3.4	148
10	Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge. Nature Medicine, 2022, 28, 154-163.	15.2	143
11	Prostate-specific antigen (PSA) density in the diagnostic algorithm of prostate cancer. Prostate Cancer and Prostatic Diseases, 2018, 21, 57-63.	2.0	134
12	Effect of artificial intelligence-based triaging of breast cancer screening mammograms on cancer detection and radiologist workload: a retrospective simulation study. The Lancet Digital Health, 2020, 2, e468-e474.	5.9	122
13	Population-based screening for cancer: hope and hype. Nature Reviews Clinical Oncology, 2016, 13, 550-565.	12.5	98
14	Comparison of a Deep Learning Risk Score and Standard Mammographic Density Score for Breast Cancer Risk Prediction. Radiology, 2020, 294, 265-272.	3.6	98
15	Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants. Nature Communications, 2018, 9, 2256.	5.8	88
16	Artificial intelligence assistance significantly improves Gleason grading of prostate biopsies by pathologists. Modern Pathology, 2021, 34, 660-671.	2.9	84
17	Prostate cancer screening using a combination of risk-prediction, MRI, and targeted prostate biopsies (STHLM3-MRI): a prospective, population-based, randomised, open-label, non-inferiority trial. Lancet Oncology, The, 2021, 22, 1240-1249.	5.1	83
18	Aggregate Cost of Mammography Screening in the United States: Comparison of Current Practice and Advocated Guidelines. Annals of Internal Medicine, 2014, 160, 145.	2.0	79

#	Article	IF	Citations
19	Prostate Cancer Diagnostics Using a Combination of the Stockholm3 Blood Test and Multiparametric Magnetic Resonance Imaging. European Urology, 2018, 74, 722-728.	0.9	70
20	The Stockholm-3 Model for Prostate Cancer Detection: Algorithm Update, Biomarker Contribution, and Reflex Test Potential. European Urology, 2018, 74, 204-210.	0.9	68
21	Prediction of individual genetic risk to prostate cancer using a polygenic score. Prostate, 2015, 75, 1467-1474.	1.2	54
22	The Stockholm-3 (STHLM3) Model can Improve Prostate Cancer Diagnostics in Men Aged 50–69 yr Compared with Current Prostate Cancer Testing. European Urology Focus, 2018, 4, 707-710.	1.6	42
23	Public interest in and acceptability of the prospect of risk-stratified screening for breast and prostate cancer. Acta Oncol \tilde{A}^3 gica, 2016, 55, 45-51.	0.8	39
24	Low-Dose Tamoxifen for Mammographic Density Reduction: A Randomized Controlled Trial. Journal of Clinical Oncology, 2021, 39, 1899-1908.	0.8	33
25	A Genetic Score Can Identify Men at High Risk for Prostate Cancer Among Men With Prostate-Specific Antigen of 1–3 ng/ml. European Urology, 2014, 65, 1184-1190.	0.9	32
26	Prevalence of <i>BRCA1</i> and <i>BRCA2</i> pathogenic variants in a large, unselected breast cancer cohort. International Journal of Cancer, 2019, 144, 1195-1204.	2.3	31
27	Summary statement on screening for prostate cancer in Europe. International Journal of Cancer, 2018, 142, 741-746.	2.3	29
28	Risk of Prostate Cancer in Men Treated With 5α-Reductase Inhibitorsâ€"A Large Population-Based Prospective Study. Journal of the National Cancer Institute, 2018, 110, 1216-1221.	3.0	27
29	Effects of pre-notification, invitation length, questionnaire length and reminder on participation rate: a quasi-randomised controlled trial. BMC Medical Research Methodology, 2018, 18, 3.	1.4	27
30	The WISDOM Personalized Breast Cancer Screening Trial: Simulation Study to Assess Potential Bias and Analytic Approaches. JNCI Cancer Spectrum, 2018, 2, pky067.	1.4	25
31	Range of Radiologist Performance in a Population-based Screening Cohort of $1\mathrm{Million}$ Digital Mammography Examinations. Radiology, 2020, 297, 33-39.	3.6	21
32	Artificial Intelligence in Magnetic Resonance Imaging–based Prostate Cancer Diagnosis: Where Do We Stand in 2021?. European Urology Focus, 2022, 8, 409-417.	1.6	21
33	The Stockholm3 blood-test predicts clinically-significant cancer on biopsy: independent validation in a multi-center community cohort. Prostate Cancer and Prostatic Diseases, 2019, 22, 137-142.	2.0	20
34	Identification of areas of grading difficulties in prostate cancer and comparison with artificial intelligence assisted grading. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2020, 477, 777-786.	1.4	20
35	The WISDOM study: a new approach to screening can and should be tested. Breast Cancer Research and Treatment, 2021, 189, 593-598.	1.1	19
36	The economic burden of prostate cancer – a Swedish prevalence-based register study. BMC Health Services Research, 2020, 20, 448.	0.9	19

#	Article	IF	Citations
37	Artificial Intelligence for Diagnosis and Gleason Grading of Prostate Cancer in Biopsiesâ€"Current Status and Next Steps. European Urology Focus, 2021, 7, 687-691.	1.6	18
38	Association of 5î±-Reductase Inhibitors With Prostate Cancer Mortality. JAMA Oncology, 2022, 8, 1019.	3.4	18
39	Clinical trial design during and beyond the pandemic: the I-SPY COVID trial. Nature Medicine, 2022, 28, 9-11.	15.2	17
40	Association Between Antidiabetic Medications and Prostate-Specific Antigen Levels and Biopsy Results. JAMA Network Open, 2019, 2, e1914689.	2.8	16
41	The ProBio trial: molecular biomarkers for advancing personalized treatment decision in patients with metastatic castration-resistant prostate cancer. Trials, 2020, 21, 579.	0.7	16
42	Head-to-head Comparison of Conventional, and Image- and Biomarker-based Prostate Cancer Risk Calculators. European Urology Focus, 2021, 7, 546-553.	1.6	16
43	The impact of different prostate-specific antigen (PSA) testing intervals on Gleason score at diagnosis and the risk of experiencing false-positive biopsy recommendations: a population-based cohort study. BMJ Open, 2019, 9, e027958.	0.8	15
44	Intensity of Active Surveillance and Transition to Treatment in Men with Low-risk Prostate Cancer. European Urology Oncology, 2020, 3, 640-647.	2.6	15
45	Detection of Prostate Cancer Using a Multistep Approach with Prostate-specific Antigen, the Stockholm 3 Test, and Targeted Biopsies: The STHLM3 MRI Project. European Urology Focus, 2017, 3, 526-528.	1.6	14
46	Repeat Prostate-Specific Antigen Tests Before Prostate Biopsy Decisions. Journal of the National Cancer Institute, 2016, 108, djw165.	3.0	13
47	A Unified Prostate Cancer Risk Prediction Model Combining the Stockholm3 Test and Magnetic Resonance Imaging. European Urology Oncology, 2019, 2, 490-496.	2.6	13
48	Predictors of participation in risk-based prostate cancer screening. PLoS ONE, 2018, 13, e0200409.	1.1	12
49	Mortality in men with castrationâ€resistant prostate cancer—A longâ€term followâ€up of a populationâ€based realâ€world cohort. BJUI Compass, 2022, 3, 173-183.	0.7	12
50	Prognostic factors for digital range of motion after intrasynovial flexor tendon injury and repair: Long-term follow-up on 273 patients treated with active extension-passive flexion with rubber bands. Journal of Hand Therapy, 2019, 32, 328-333.	0.7	11
51	Does a novel diagnostic pathway including blood-based risk prediction and MRI-targeted biopsies outperform prostate cancer screening using prostate-specific antigen and systematic prostate biopsies? - protocol of the randomised study STHLM3MRI. BMJ Open, 2019, 9, e027816.	0.8	11
52	Lower urinary tract symptoms (LUTS) are not associated with an increased risk of prostate cancer in men 50–69 years with PSA ≥3 ng/ml. Scandinavian Journal of Urology, 2020, 54, 1-6.	0.6	11
53	A natural history model for planning prostate cancer testing: Calibration and validation using Swedish registry data. PLoS ONE, 2019, 14, e0211918.	1.1	10
54	Predictors of adverse pathology on radical prostatectomy specimen in men initially enrolled in active surveillance for low-risk prostate cancer. World Journal of Urology, 2021, 39, 1797-1804.	1.2	10

#	Article	IF	Citations
55	Balancing Overdiagnosis and Early Detection of Prostate Cancer using the Stockholm-3 Model. European Urology Focus, 2018, 4, 385-387.	1.6	9
56	Prognostic value of perineural invasion in prostate needle biopsies: a population-based study of patients treated by radical prostatectomy. Journal of Clinical Pathology, 2020, 73, 630-635.	1.0	9
57	The utility of artificial intelligence in the assessment of prostate pathology. Histopathology, 2020, 76, 790-792.	1.6	9
58	Incorporating Magnetic Resonance Imaging and Biomarkers in Active Surveillance Protocols - Results From the Prospective Stockholm3 Active Surveillance Trial (STHLM3AS). Journal of the National Cancer Institute, 2021, 113, 632-640.	3.0	9
59	Transcriptome-wide prediction of prostate cancer gene expression from histopathology images using co-expression-based convolutional neural networks. Bioinformatics, 2022, 38, 3462-3469.	1.8	9
60	Affinity proteomic profiling of plasma for proteins associated to area-based mammographic breast density. Breast Cancer Research, 2018, 20, 14.	2.2	8
61	Association between PSA density and prostate cancer in men without significant MRI lesions. BJU International, 2020, 125, 763-764.	1.3	8
62	The STHLM3 prostate cancer diagnostic study: calibration, clarification, and comments. Nature Reviews Clinical Oncology, 2016, 13, 394-394.	12.5	7
63	Are Prostate Specific-Antigen (PSA) and age associated with the risk of ISUP Grade 1 prostate cancer? Results from 72 996 individual biopsy cores in 6 083 men from the Stockholm3 study. PLoS ONE, 2019, 14, e0218280.	1.1	7
64	Interobserver reproducibility of perineural invasion of prostatic adenocarcinoma in needle biopsies. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2021, 478, 1109-1116.	1.4	7
65	Clinical Trial Protocol for ProBio: An Outcome-adaptive and Randomised Multiarm Biomarker-driven Study in Patients with Metastatic Prostate Cancer. European Urology Focus, 2022, 8, 1617-1621.	1.6	7
66	Detection of perineural invasion in prostate needle biopsies with deep neural networks. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2022, 481, 73-82.	1.4	7
67	Ethnic variation in prostate cancer detection: a feasibility study for use of the Stockholm3 test in a multiethnic U.S. cohort. Prostate Cancer and Prostatic Diseases, 2021, 24, 120-127.	2.0	5
68	Using deep learning to detect patients at risk for prostate cancer despite benign biopsies. IScience, 2022, 25, 104663.	1.9	5
69	Detection of ductal carcinoma in situ and subsequent interval cancers. BMJ, The, 2016, 352, i551.	3.0	4
70	E-Science technologies in a workflow for personalized medicine using cancer screening as a case study. Journal of the American Medical Informatics Association: JAMIA, 2017, 24, 950-957.	2.2	4
71	Real world treatment utilization patterns in patients with castration-resistant prostate cancer. Scandinavian Journal of Urology, 2021, 55, 299-306.	0.6	4
72	Progression on active surveillance for prostate cancer in Black men: a systematic review and meta-analysis. Prostate Cancer and Prostatic Diseases, 2022, 25, 165-173.	2.0	4

#	Article	lF	CITATIONS
73	Cost-Effectiveness of the Stockholm3 Test and Magnetic Resonance Imaging in Prostate Cancer Screening: A Microsimulation Study. European Urology, 2022, 82, 12-19.	0.9	4
74	Effects of increasing the PSA cutoff to perform additional biomarker tests before prostate biopsy. BMC Urology, 2017, 17, 92.	0.6	3
75	OpenPhi: an interface to access Philips iSyntax whole slide images for computational pathology. Bioinformatics, 2021, 37, 3995-3997.	1.8	3
76	Towards Next-generation Urine-based Prostate Cancer Risk Stratification. European Urology, 2018, 74, 739-740.	0.9	2
77	Re: Tobias Nordström, Andrew Vickers, Melissa Assel, Hans Lilja, Henrik Grönberg, Martin Eklund. Comparison Between the Four-kallikrein Panel and Prostate Health Index for Predicting Prostate Cancer. Eur Urol 2015;68:139–46. European Urology, 2018, 74, e35-e36.	0.9	2
78	The importance of study design in the application of artificial intelligence methods in medicine. Npj Digital Medicine, 2019, 2, 101.	5.7	2
79	Prostate Cancer Screening Using a Combination of Risk-Prediction, Magnetic Resonance Imaging and Targeted Prostate Biopsies: A Randomised Trial. SSRN Electronic Journal, 0, , .	0.4	2
80	The STHLM3-model, Risk-based Prostate Cancer Testing Identifies Men at High Risk Without Inducing Negative Psychosocial Effects. European Urology Open Science, 2021, 24, 43-51.	0.2	2
81	Identifying Prostate Cancer Among Men with Lower Urinary Tract Symptoms. European Urology Open Science, 2021, 24, 11-16.	0.2	2
82	A Head-to-head Comparison of Prostate Cancer Diagnostic Strategies Using the Stockholm3 Test, Magnetic Resonance Imaging, and Swedish National Guidelines: Results from a Prospective Population-based Screening Study. European Urology Open Science, 2022, 38, 32-39.	0.2	2
83	Impact of a Deep Learning Model for Predicting Mammographic Breast Density in Routine Clinical Practice. Journal of the American College of Radiology, 2022, 19, 1021-1030.	0.9	2
84	Biomarker discrimination and calibration with MRI-targeted biopsies: an analysis with the Stockholm3 test. Prostate Cancer and Prostatic Diseases, 2021, 24, 457-464.	2.0	1
85	Increased Pathway Complexity Is a Prognostic Biomarker in Metastatic Castration-Resistant Prostate Cancer. Cancers, 2021, 13, 1588.	1.7	1
86	Time to castration-resistant prostate cancer and prostate cancer death according to PSA response in men with non-metastatic prostate cancer treated with gonadotropin releasing hormone agonists. Scandinavian Journal of Urology, 2022, 56, 169-175.	0.6	1
87	Future directions in prostate cancer testing: a comment upon results from the prospective population-based diagnostic STHLM3 study—Grönberg H et al. Lancet Oncology. 2015 Nov 9; doi:10.1016/S1470-2045(15)00361-7. World Journal of Urology, 2017, 35, 895-896.	1.2	0
88	Reply to Ola Bratt and Anna Öfverholm's Letter to the Editor re: Peter Ström, Tobias Nordström, Henrik Grönberg, Martin Eklund. The Stockholm-3 Model for Prostate Cancer Detection: Algorithm Update, Biomarker Contribution, and Reflex Test Potential. Eur Urol. In press. https://doi.org/10.1016/j.eururo.2017.12.028. European Urology, 2018, 74, e10-e11.	0.9	O
89	Is there any association between prostate-specific antigen screening frequency and uptake of active surveillance in men with low or very low risk prostate cancer?. BMC Urology, 2019, 19, 73.	0.6	O
90	Reply to Erik Rud, Peter Lauritzen, and Eduard Baco's Letter to the Editor re: Henrik Grönberg, Martin Eklund, Wolfgang Picker, et al. Prostate Cancer Diagnostics Using a Combination of the Stockholm3 Blood Test and Multiparametric Magnetic Resonance Imaging. Eur Urol 2018;74:722–8. European Urology, 2019, 75, e104-e105.	0.9	0

#	Article	IF	CITATIONS
91	Response to Walsh. Journal of the National Cancer Institute, 2019, 111, 748-748.	3.0	O
92	Response to Carter et al JNCI Cancer Spectrum, 2020, 4, pkaa016.	1.4	0
93	The emerging role of artificial intelligence in the reporting of prostate pathology. Pathology, 2021, 53, 565-567.	0.3	O
94	Association of changing prostate-specific antigen (PSA) levels on repeat testing with lower risk for Gleason Score (GS) 剥 7 prostate cancer Journal of Clinical Oncology, 2016, 34, 284-284.	0.8	0
95	Title is missing!. , 2020, 15, e0238217.		0
96	Title is missing!. , 2020, 15, e0238217.		0
97	Title is missing!. , 2020, 15, e0238217.		0
98	Title is missing!. , 2020, 15, e0238217.		0